Featured Event

Mechanically Chiral Molecules: Synthesis and Applications

2024-08-07

英国伯明翰大学Stephen Goldup教授作客南京畅谈机械分子手性


江苏省化学化工学会,2024-08-16


2024814日,应江苏省化学化工学会和南京大学化学化工学院邀请,伯明翰大学化学系教授、英国皇家化学会Chem. Sci. 副主编,Stephen Goldup教授访问南京和南京大学,作客 “介观化学论坛·名家报告”,并在南京大学化学化工学院报告厅做题为“机械手性分子:合成与应用(Mechanically Chiral Molecules: Synthesis and Applications)”学术报告。来自扬州大学、常州大学、南京航空航天大学、东南大学和南京大学部分教师与研究生参加报告会。

报告会由南京大学化学化工学院王乐勇教授主持。王乐勇教授首先感谢Stephen Goldup教授的来访南京和南京大学,介绍了Stephen Goldup教授的教育背景、工作经历和主要学术成就。

Stephen Goldup教授首先对受邀分享自己的科研成果表示感谢,然后分享了在构建机械互锁手性分子方面的工作与心得。Stephen Goldup教授展示了利用简单的手性助剂和相关方法,立体选择性制备索烃(Catenane)和轮烷(Rotaxane)。在此过程中,Stephen Goldup教授还进一步展示了新的机械立体性单元,描述新型手性机械分子设计、制备、构造与性质。最后Goldup教授讨论了机械手性分子在催化和探针以及CPL等领域的潜在应用。

基于有机化合物碳原子sp3杂化的中心手性是最常见的一类手性分子;后来,面手型和螺旋手型的进一步发展,从广度和深度方面增加了人们对手型的认识; 一般来讲手性结构越刚性,其所能带来的不对称因子越大,科顿(Cotton)效便越强。机械互锁分子的化学拓扑学开辟了化学的新领域,使得化学家们第一次接触到了拓扑学。机械互锁分子的拓扑结构不仅使其在应用方面拥有巨大的潜能,而且赋予了机械互锁分子独特的手性。这种手性指的是分子无法通过三维空间的持续形变转换成为其镜像的特性,也被称为机械手性,手性轮烷和手性索烃是机械手性的典型案例。相信机械手性分子的研究,将在手性科学与工程的发展中起到重要乃至关键的作用。

Stephen Goldup教授报告使用慢速英语,深入浅出、风趣幽默,雅俗共赏,引发了大家的思考与热烈讨论。在讨论环节,师生踊跃提问,与Stephen Goldup教授关于机械互锁手性分子领域的多个问题进行了热烈的讨论与交流。






报告会后,Stephen Goldup教授与南京大学龙亿涛教授、揭克诚教授、强琚莉副教授、林晨副教授、王乐勇教授,以及南京航空航天大学胡晓玉教授、常州大学肖唐鑫教授,扬州大学吴旋博士、东南大学张曙博士等进行学术交流,并与研究生王冉冉、单飞狮、邱珩、陈润南、林文浩,徐光宙、李恒等进行了一对一学术讨论。

Stephen Goldup教授的来访将会促进江苏省化学化工学会和英国皇家化学会在超分子化学和系统组装化学领域科学家的交流和合作。


Stephen Goldup教授简介:

E-mail:s.m.goldup@bham.ac.uk; Group website: Goldup Lab Website

教育和研究经历:

2023–Professor of Chemistry (University of Birmingham)

2017–2023 Professor and (2019-2023) Royal Society Wolfson Fellow (University of Southampton)

2014–2017 Associate Professor and Royal Society URF (University of Southampton)

2008–2014 Leverhulme Trust / Royal Society URF (Queen Mary, University of London)

2007–2008 Fixed-Term Lecturer in Organic Chemistry (University of Edinburgh)

2005–2007 Senior Postdoctoral Research Associate (Prof David Leigh, University of Edinburgh)

2001–2005 PhD in Natural Product Synthesis (Prof Anthony Barrett, Imperial College London)

1996–2000 MChem (1st Class Hons / Part II with Prof Sir Jack Baldwin, University of Oxford)

科研工作:

Goldup’s work focuses on the effect of mechanical bonding on the properties and applications of molecules. He has developed some of the most efficient rotaxane-forming reactions disclosed to date (ACIE 2011; Chem. Sci.2015) and extended them to multicomponent catenanes (JACS2018), stereo-defined [n]rotaxanes (JACS2016; ACIE2016). Using this methodology, he has developed mechanically stabilised organometallic species (JACS2013, Chem. Sci. 2020), interlocked catalysts (ACIE2015, ACIE2022), sensors (ACIE2018; ACIE2018), ligands to augment the properties of transition metal ions (JACS2019; ACIE 2021), luminophores (Chem. Sci. 2021, ACIE2021) and oligonucleotides (JACS2020). He has revolutionised the synthesis of mechanically chiral molecules, beginning with the first method to make mechanically planar chiral rotaxanes without chiral stationary phase HPLC (JACS2014). This was followed by a series of articles describing the stereoselective synthesis of mechanically chiral rotaxanes (ACIE 2018, Nat. Chem. 2022, Chem2023) and catenanes (Chem2019, JACS2022, Nat. Chem. 2022, Nat. Chem. 2023). Alongside these synthetic breakthroughs, he has provided a framework for the discussion of mechanical stereochemistry and in the process identified new mechanical stereogenic units (CSR 2018, Nat. Chem. 2022, JACS2024, JACS2024), which have also yielded to his stereoselective approach. In 2020 he demonstrated the first example of enantioselective catalysis with a mechanically chiral ligand (Chem2020), highlighting the long-term potential of the molecules that his methodological breakthroughs now make accessible.