Adv. Mater., 2020, 32, 1903762 - Self-Healing Polymers Based on Coordination Bonds


Self-healing ability is an important survival feature in nature, with which living beings can spontaneously repair damage when wounded. Inspired by nature, people have designed and synthesized many self-healing materials by encapsulating healing agents or incorporating reversible covalent bonds or noncovalent interactions into a polymer matrix. Among the noncovalent interactions, the coordination bond is demonstrated to be effective for constructing highly efficient self-healing polymers. Moreover, with the presence of functional metal ions or ligands and dynamic metal–ligand bonds, self-healing polymers can show various functions such as dielectrics, luminescence, magnetism, catalysis, stimuli-responsiveness, and shape-memory behavior. In our recent review (Adv. Mater., 2020, 32, 1903762), the recent developments and achievements made in the field of self-healing polymers based on coordination bonds are presented. The advantages of coordination bonds in constructing self-healing polymers are highlighted, the various metal–ligand bonds being utilized in self-healing polymers are summarized, and examples of functional self-healing polymers originating from metal–ligand interactions are given. Finally, a perspective is included addressing the promises and challenges for the future development of self-healing polymers based on coordination bonds.

南京市栖霞区仙林大道163号 南京大学仙林校区 210023