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ABSTRACT: Reduction of dinitrogen ¢Nis a major challenge for
chemists. Cooperation of multiple metal centers to break the strong /P\ P N g P
N, triple bond has been idemtil as a crucial step in both the§1 al Rh/ /Na B \ L \ \ i
industrial and the natural ammonia syntheses. However, reparis 6f,=  “y<nN. M N ZU=N N-—
. . ) = /\ = \ ~ 6 KCq N \/ \
the cleavage of,Noy a multimetallic uranium complex remai cl RT \ \ P
f . > PI\ N P—_\ /U~ N
extremely rare, although uranium species were used as catalyst irT theP P RN >N/
early HarberBosch process. Here we report the cleavaget@f N B
two nitrides by a multimetallic uraniutmodium cluster at ambient
temperature and pressure. The nitride product further reacts with acid to give substantial yields of ammonium. The presence
uranium rhodium bond in this multimetallic cluster was revealed by X-ray crystallographic and computational studies. This stud
demonstrates that the multimetallic clusters containing uranium and transition metals are promising mateaitds fand\
reduction.

INTRODUCTION of N, in the presence of K& These studies suggest that
The cleavage and conversion of the stronty Kiple bond dln!trogen xation or activation may be expected for highly
in dinitrogen (N) have attracted considerable attention from?@ctive low-valent uranium compounds with N/O-donor-based
both academia and industry? The current industrial 9and. However, the complete cleavage, af Bix-electron
ammonia synthesis from, khe HaberBosch process, uses reduction, by multimetallic complexes containing uranium and
an iron-based catalyst and requires high temperatures dfff’Sition metals has not been reported to date. .
pressures. Biologically, however,cah be converted to  H€ré we describe thest example of a multimetallic
ammonia by nitrogenases at ambient temperature aifidnium rhodium cluster that reacts withaxd a potassium-

pressure. The most important active site in nitrogenases i9@s€d reducing agent to give a species with two nitrides
multimetallic ironmolybdenum clustét.’® This has in-  through N N bond cleavage. Protonation of this product
spired chemists to explore thation and reduction of, My with an excess of acid leads to the formation of ammonium.

Fe- and Mo-based molecular catalysts, which have been
investigated extensively in recent detadeés. RESULTS AND DISCUSSION

Before an Fe-based catalyst was used for the industriaksynthesis, Characterization, and Reactivity Complex
synthe_S|s of ammonia, the early Hdbesch_ process utilized {U[N(CH 3)(CH ,CH,NPPL),](Cl) (THF)} ( 2) was synthe-
a uranium-based catafys$ince therst uranium Mlcomplex sized by the reaction of uranium tetrachloride J{U@ih
was reported in 19§%some examples qf molecular Ura”ium[CH3N(CH2CH2NHP‘Pr2)ﬂ (1) in the presence 8BuLi in
complexes capable oking or reducing Nhave ap-  terahydrofuran (THF). It can be isolated as a brown solid in
peared” “° However, only one example of bleavage gy, yield $cheme)1 The structure & was characterized by
achieved by a uranium species with [K(naphthalenide)] ha§clear magnetic resonance (NMR) spectroscopy, elemental
been reportetf. Consequently, understanding the S|x-electro%na|ysis, and single-crystal X-rasaction. ThetH NMR
N, reduction by molecular uranium complexes remains ghectrum of shows a broad range of peaks from +88.49 to
substantial challeritjePrevious investigations show that the 81.53 ppm, which is consistent with the presence of

multimetallic uranium complexes have great potential in Nyaramagnetic tetravalent uranium complexes. Our previous
reduction due to the synergistieas from the derent

metals™*° ¥ For instance, Cummins and co-workers showed
that a trivalent uranium precursor can facilitateduiction ~ Received: May 28, 2020
on a Mo centet* Mazzanti and co-workers reported a four-Published: August 7, 2020
electron reduction of ;Nby the multimetallic uranium

potassium complex88’ Very recently, Arnold and co-

workers reported that thorium or uranium dinuclear metalla-

cycles can mediate the four-electron reduction and conversion
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Scheme 1. Cleavage of by a Multimetallic UraniumRhodium Cluster
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studies implied that complexes with th&MNgand are useful

ammonium ion, Ni, was observed by the adidtion of

precursors for the construction of multimetallic clusters with these N cleavage product,and5-°N (Figures S9S1).
block elements. “° Therefore, we examined the reactiéh of For instance, treatment of a THF solutioB wfth 50 equiv
with monovalent transition metal species. Treatment of 4 equi¥ pyridine hydrochloride (PyHCI) gives J@Hin 82% yield,

of monomeric uranium complgxwith 1 equiv of [RhCI-
(COD)], (COD = cyclooctadiene) at 11 in toluene
results in the formation of a complex [{U[N(gH
(CH,CH,NPP,),|(Cl»)},( -Cl)( -Rh)] (3) as brown crys-
tals in 35% vyield after recrystallization from toluerDacC
(Scheme)l

The reduction of 2 equiv of compwwith 4 equiv of
potassium graphite (KGn THF under 1 atm of MNor argon
leads to the formation of a multimetallic cluster [{U[NJEH
(CH,CH,NPPK,),J(CI)} 5 -Cl)( -Rh)] (4), which can be

which shows a triplet resonance .32 ppmy = 52 Hz)

in its 'H NMR spectrum in deuterated dimethyl sulfoxide.
Under the same procedure, a doublet resonancer (32
ppm,J = 72 Hz) was observed in th& NMR spectrum for

the acidied product!NH,CI, formed from5-°N. These
results are consistent with previous studies,foedNction

and hydrogenation to ammofiia. These'N-labeled studies
demonstrate that the two nitride ligandsariginate from M

and that both the nitrides are nucleophilic and react with acid
to form ammonium salts. Therefore, the formatidfrom 3

isolated as red-brown crystals in 71% yield after a simme4 involves the binding, activation, and complete six-electron

workup Scheme)lFurther reduction of 2 equiv of complex
with 6 equiv of Kgunder a N atmosphere (1 atm) for 2 h

reductive cleavage of by a multimetallic uraniurrhodium
cluster and KQunder conditions of ambient temperature and

followed by ltration and recrystallization furnished the N pressure. Encouraged by the achievements of uranium nitride

cleavage complex HWI(CH 3)(CH,CH,NPP,),],(Rh)( -
N)},] (5) in 39% vyield as dark brown cryst&lsheme )1

The deep colors of these multimetallic uranium clu3tdrs (

functionalization;***® *° the attempt to synthesize N-
containing organic compounds from compewas
unsuccessful thus far.

and5) are consistent with the strong absorption of their THF The variable-temperature magnetic data of compl&xes

solution in the ultraviolevisible regionHigures S12514.

4, and5 were measured in the solid state with a super-

Complex5 can be prepared directly by the reduction of 2conducting quantum interference device (SQUID). The
equiv of compleXwith an excess (typically 10 equiv) of KC magnetic moments for these complexes exhibit a strong

under 1 atm of Nat RT for 6 h. Fromn situ NMR
experiments, we found that only comglesas generated in
the rst 2 h and could further react with the residuglt&C
form the nal N, cleavage produst(Figure SB In addition,
the reaction of compl@with excess Kn THF under 1 atm

temperature dependency and approach to zero at low
temperaturesF{gures S16519. These results show that
the formal oxidation state of U ions in these clusters is +IV.
Due to the unique electronic structure in our system, the NIR
data for complex&s4, and5 (Figure S1Bdo not resemble

of N, at RT for 2 days was performed, and no reactionypical U(IV) complexés>® but are more similar to
occurred, which suggests that this tetravalent uranium compég&ctronically noninnocent systétisTherefore, the reduc-

2 was not liable to be reduced bygK&ording low-valent
uranium species and then to reduce theTNerefore, the

tion of 2 equiv of compl&uwith 4 equiv of Kghas the eect
of reducing Rh(l) to Rh(l), whereas the six reducing

clusted with U Rh bonds is the species which undergoes thelectrons were used to cleavage thélNriple bond in the

N, cleavage in the presence ofs.KGOnly a mixture of

formation ob from the reaction of 2 equiv of complaxith

unidenti ed products was observed with reduction of 2 equig equiv of K Thus, the formal oxidation states of U and Rh

of complexe8 or 4 with 10 or 6 equiv of KCunder an

(+IV for U and | for Rh) in both clusterd and5 are

atmosphere of argon rather thanTese results demonstrate identical. To the best of our knowledge, this igshexample

that the two nitride ligands $noriginate from M
To further verify the source of the nitride in conpléxe

5N-labeled producg-°N, was synthesized by the reduction

of 3 with KG; under 1 atm of*N,. The production of the

15005

of six-electron reduction of by a multimetallic cluster with a

uranium metal bond and a reducing agentdKC
Solid-State Structures. The solid-state structures of

complexes2, 3, 4, and 5 were determined by X-ray

https://dx.doi.org/10.1021/jacs.0c05788
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Figure 1.Solid-state structures2{A), 3 (B), 4 (C), and5 (D) by X-ray crystallography with 50% probability ellipsoids. Solvent molecules,
hydrogen atoms, and isopropyl moietiesPip &e omitted for clarity. The Bh bonds ir8 and4 and the core & (U,RhN,) are red.
Uranium, green; rhodium, red; phosphorus, violet red; nitrogen, blue; chlorine, yellow green; oxygen, pink; and carbon, gray.

crystallographyF{gure ). The structural features of complex N bonds (U1 N7: 2.158(7) and U2N7: 2.154(7) A). These

2 were very similar to the uranium species employing three U N bond distances in complgxare comparable to

dianionic N P ligand, {O[(CH),NP(Pr),] ,UCL(THF)}.* those found in a hydrazido-bridged uranium complex

The U Rh distances of 3.3177(5) A and 3.2609(5) A in(2.163(13) 2.311(13) AJ® and are consistent with the

complex3 are larger than the sum of the covalent single bondresence of UN single bonds. The N'N7 distance of

radii for uranium and rhodium (2.95°Ajyhich suggests that 2.780 A in compleX suggests that there is no Ml bond.

weak bonding interactions between Rh and U exist in compl&kus, the N N triple bond in N has been broken via a six-

3 (Figure B). electron reduction to form two nitrides. Previous studies show
However, the URh distances in compkx2.6555(6) A) that the four-electron reductive cleavage of th Nouble

are signicantly shorter than those found in complgxgure bond in azobenzene to form bisphenylimido derivatives has

1C). This U Rh bond length is also shorter than the been established by electron-rich uranium species with redox-

previously reported WRh dative bonds (2.7601(5) and active ligands°°

2.7630(5) A) but slightly longer than the Rh double The U2 Rh1 bond length of 2.5139(7) A in com@éx

dative bond (2.5835(3) AY>® The U1-U1l separation of slightly shorter than that found in compliexwhich is

4.0397(6) A suggests that there is no signi U U bonding consistent with a direct ®h bond. However, the bond

interaction the sum of the covalent single bond radii for U islength of U1 Rh1 (3.2160(7) A) is much longer than the sum

3.40 A. With the formal oxidation states of U(IV) and Rh(  of the covalent single bond radii for U and Rh (2.95 A),

in complex, the bonding of the LRh U unit probably has  suggesting a weak dative bond interaction between Rh1l and

two resonance structures, Bhl Ul and Ul Rhl U1. In addition, the distances of-WI2 (3.4677(4) A) and
U1, both of which contain a B®h bond and a Rh-to-U  U2---U2 (3.4730(6) A) are shorter than thatirindicating a
dative bondKigure S20 weak interaction between these U atoms. Despite a series of

The centrosymmetric structuresakveals the presence of species with UM bonds reported previouSly®® the
two bridged nitride groups {N in a U,RhN, core Figure formation of compleX is the rst example of N xation,
1D). Each of the nitride atoms is bonded to three U atomsieduction, and cleavage by a complex containiMgobnds.
with one UN bond (U2 N7: 2.302(6) A) being Computational Analysis. To gain further insight into the
signi cantly longer than the other two almost equivalent U nature of this unprecedented full reduction gf DVFT

15006 https://dx.doi.org/10.1021/jacs.0c05788
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(B3PW91 with and without inclusion of the dispersionorbitals on U (5%). On the other hand, noWinteraction
corrections) calculations were carried out to describe thsould be found.

bonding in complexe® 4, and5 as this computational This description is corroborated by the natural bonding
approach has proven its accuracy to descridd U orbital (NBO) analysis in which donations from Rh to U are
system&*** The optimized geometry of comp@xwith found at the second-order doracceptor level (donation
dispersion correction included is in excellent agreement wigfound 40 kcal md). Interestingly, some back-donation U
the experimental one (sBepporting InformatipnAmong ~ Rh was also found (20 kcal mah average), enhancing the
other things, the LRh bond distances are reproduced with anPresence of a Rh(If.dThe LUMO of the systenfrigure 3

accuracy of 0.01 A (3.28 and 3.31 A) as well as kddd involves the empty d orbital on Rh as well as f orbitals on the
Rh Cl bond lengths, illustrating the correctness of thidwo uranium centers. Consequently, the reduction of complex

method. The square planar geometry around the rhodiugh &N involve both the uranium and rhodium centers. To
center is consistent with a Rh(i§ center, implying the investigate this, calculations were carried out on c@nplex

presence of two U(IV) moieties. The latter is ensured by théghig:mw?es )gb:[[ﬁieneod E%{fsgmqggrmeztfqz%ﬁaKdgi:ssgsili?)rn
unpaired density plot (segupporting Informatipn Even piexs, p 9 y P

though the URh distance is long, a bonding interaction iScorrectlon included is in agreement with the experimental

observed in the molecular orbital spectrum. Indeed th%eometry. The shortening of theRh distance is observ%{j,
. . ot N ' d the dist i duced with isi f0.05 A. Th
HOMO 6 (Figure 2 shows a bonding interaction between na Ihe cIstance 1S reproduced with a precision o ©

; ) : ‘=~ short distance is in line with a more covalent interaction as
the two uranium centers and the rhodium. This orbital i§5nd hoth in the molecular orbital diagram and at the NBO
strongly polarized toward Rh (95%) and can be viewed as&g|.
donation from alled d orbital of Rh to the empty df hybrid  Two U Rh interactions strongly polarized toward Rh
(91%) are found and involve a pure d orbital on Rh (97%) and
a pdf hybrid orbital on U (12% p, 35% d, and 49% f). The
associated WBIs are 0.85, in line with mainly covalent
interactions (donoracceptor interaction with overlap). On
the other hand, some U interaction is observed as indicated
by a WBI of 0.17 (equivalent to hydrogen bonding). The
geometry around Rh is no longer square-planar but rather a
distorted tetrahedron that may indicate that the reduction
mainly occurred at the rhodium center having'®a d
con guration. This is cormed by analysis of the unpaired
spin densityKigure 3. Indeed, the unpaired spin density is

Figure 3.Unpaired spin density plot of complex

only located on the two uranium centers, consistent with a

closed-shell coguration at the Rh center, and the values that

were found are similar to that of comflex line with two

U(IV). Thus, the reduction occurred at the Rh center. This is
Figure 2.Selected molecular orbitals of com@lé&she HOMO 6 further highlighted by a large core calculation where the
displaying the URh bonding interaction is on the top and the oxidation state of uranium wasgd to +IV (the optimized
LUMO on the bottom. geometry in this case compares well with the small core one;

15007 https://dx.doi.org/10.1021/jacs.0c05788
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see table in the theoretical calculations section ifillthe abstract the chlorine iorSigure %. The overall reduction of
Interestingly, although the Bh distances are far less preciseN, from4 to 5 is exothermic by 40.0 kcal moand each step
without dispersion corrections, the bonding analysis is quité this reduction is computed to be favored (23.4 kcal mol
similar in terms of interactions but not in strength. for the formation ofA from 4 and 6.3 kcal mdi for the
Finally, the unprecedented reduction pby complext formation ofB from A and nally 10.3 kcal mdl for the
was investigated computationally, even though locatirigrmation ob fromB). This process is similar to that observed
transition states for a heterometallic cluster electron transfarthe formation o4 from 3 which is exothermic by 17.6 kcal
reaction is not possible as it occurs through tunneticts dt mol 1. The reduction of Nis e ective through the
should be noticed that experimentally in the absence of Rh tbgordination to the uranium centers in the proposed
reduction of M does not occur, and this is consistent with ajntermediates as highlighted by the increase of the N
cooperative @ct between the two metals. As the Rh centers ibond distance (1.23 A iA in line with a double bond
complex are already fully reduced, the subsequent reductiagharacter and 1.43 A B in line with a single bond).
of N, should involve the uranium center. This is hlghllghted bX1oreover, the disruption of the N bond is evidenced by
the nature of the LUMO of compléx(Figure J, that is,  the nature of the HOMO of intermediatésand B (see
Supporting InformatipnFor intermediaté, the HOMO is
clearly the NN * in line with the disruption of one NI
bond. The LUMO is the secontithat overlaps with f orbitals
on uranium and involves a d from Rh. Thus, this indicates that
a second reduction of the N bond would be possible by
populating this LUMO, and this reduction will involve both
uranium and rhodium centers. This second reduction is
therefore found in the molecular orbital diagram of
intermediateB, as the HOMO is the second N * in
line with a sequential disruption of the NNbond. The
HOMO is clearly involving both a uranium and rhodium
center in line with a cooperativea of the two metals for
this reduction. The LUMO of intermedi&tévolves the*
of N, but also the rhodium and uranium centers so that a
further reduction of Ns possible and implies U and Rh. This
is achieved in compl&xor which the HOMO in this time
only involves the rhodium center that further highlights the
importance of the rhodium center in this reduction process.
Due to the number of metal centers, calculations of complex
5 were conducted using f-in-core RECPs to describe the
uranium centers adapted to the +IV oxidation state. The
optimized geometry using this methodology is in agreement
with the experimental geometry Sepporting Informatipn
The U U distance is well reproduced within 2.0%, and the
U Rh bond length is reproduced with a maximum deviation
of 9.0%. The latter is well-known when large RECPs are used
as it corresponds to the lack of correlation of the core
valences. Thus, these results are in line with an oxidation state
involving the two uranium centers but also the rhodium*!V of the uranium centers anbof the rhodium in complex
Therefore, the coordination of an incoming molecule such &s This is further corroborated by small core calculations of
N, has to occur at the uranium center, and the electron-richnpaired spin densities (2.0 on each U, Sg®orting
rhodium ensures electronic stabilization through electronioformation). The bonding analysis in comgéxdicates that
communication with the uranium centers. the U Rh bonds are mainly described as dative bonds from
Accordingly, a possible reaction sequence is proposed iied d orbitals on Rh into an empty df hybrid orbital on the U.
which N is sequentially reduced with 6 equiv of KC  This is further highlighted by the WBIs which are 0.52 and

PP
C\N\U//\ /\\/N/ﬁ C R //ﬁ

P P. N—= \ / /—,\ P— ~
@\/ h% \/N/a 2KCs, N bNL\\”l l/p//\NJ 2KCq, N bN/\\P P/\NJ T ( ) \/Rh\ ’\J
/U—N

Figure 4.LUMO of complex.

U U=—N_ ———> B B ‘ £\

QN/L\P\O/J/\NJ -2Kcl A\ N\U; \ -2Kal A\ N\; \\ ﬁ ok \ \/ U\Nj

4 o’/ TR /\\ //\ \Rh/U\N\JN\
S i ) <>

A B 5

Figure 5.Proposed reaction sequence for thestluction.
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