Interface Engineering of Anchored Ultrathin TiO$_2$/MoS$_2$ Heterolayers for Highly-Efficient Electrochemical Hydrogen Production

Jia Liang, Caixing Wang, Peiyang Zhao, Yanrong Wang, Lianbo Ma, Guoyin Zhu, Yi Hu, Zhipeng Lu, Zhaoran Xu, Yue Ma, Tao Chen, Zuoxiu Tie, Jie Liu, and Zhong Jin

Supporting Information

ABSTRACT: An efficient self-standing hydrogen evolution electrode was prepared by in situ growth of stacked ultrathin TiO$_2$/MoS$_2$ heterolayers on carbon paper (CP@TiO$_2$@MoS$_2$). Owing to the high overall conductivity, large electrochemical surface area and abundant active sites, this novel electrode exhibits an excellent performance for hydrogen evolution reaction (HER). Remarkably, the composite electrode shows a low Tafel slope of 41.7 mV/dec, and an ultrahigh cathodic current density of 550 mA/cm2 at a very low overpotential of 0.25 V. This work presents a new universal strategy for the construction of effective, durable, scalable, and inexpensive electrodes that can be extended to other electrocatalytic systems.

KEYWORDS: molybdenum disulphide, titanium dioxide, self-standing, electrochemistry, hydrogen

INTRODUCTION

Hydrogen generated from water splitting represents one of the most promising clean and renewable chemical energy carriers. Among the existing routes for pure hydrogen production, hydrogen evolution reaction (HER), the electrocatalytic reduction of protons to molecular hydrogen, has attracted growing attentions. Because of the low overpotential and fast kinetics, platinum (Pt) and other noble metals were widely investigated as the catalysts for HER. However, to overcome the drawbacks of high cost and limited resources of noble metals, great efforts have been made to discover viable alternatives for HER catalysts. Over the past few decades, layered transition metal dichalcogenides (TMDCs) with the general formula of MX$_2$ (M = Co, Ni, Mo, W, etc.; X = S, Se, or Te) have emerged as potential candidates to replace precious metals, owing to the highly active electrocatalytic performance and high stability.

Molybdenum disulphide (MoS$_2$), as a typical TMDC material with two-dimensional (2D) structure and semiconducting properties, has exhibited great promise for the applications in electrocatalysis. Both theoretical and experimental results have revealed that the HER activity of MoS$_2$ is mainly resulted from the edge sites of S atoms, because the surface energy of edge planes is much higher than that of basal planes. Compared to bulk MoS$_2$ crystals, ultrathin MoS$_2$ nanostructures with plenty of exposed edge sites can exhibit much higher electrocatalytic activity. In recent years, MoS$_2$ nanostructures and composites have been prepared and tested as HER catalysts, demonstrating reasonably good performances. However, comparing with Pt or other noble materials, the overall conductivity, activity and stability of MoS$_2$ based electrocatalysts still need to be further improved. Especially, to improve the conductivity and electrocatalytic of electrode, it is very desirable to design novel free-standing composite electrode based on MoS$_2$ and three-dimensional (3D) conductive support materials, such as carbon nanomaterials. However, because of the intrinsic surface inertness and hydrophobic nature, it is difficult to firmly disperse and bind MoS$_2$ nanocrystals onto carbon frameworks. Therefore, the interfaces between MoS$_2$ and support materials should be well tuned, to ensure the strong interfacial binding, smooth charge transfer, and large effective surface area.

Herein, we report an effective approach to grow TiO$_2$/MoS$_2$ ultrathin heterolayers on commercial-available 3D-interconnected carbon paper (CP) with the help of a sandwiched intermediate layer of TiO$_2$. In this composite electrode, compact-packed MoS$_2$ nanolayer anchored on the surfaces of CP can expose large surface area and abundant active sites. The charge transfer between MoS$_2$ and CP is facilitated by the electron transfer layer of ultrathin TiO$_2$. Moreover, this self-standing electrode can be directly employed as the working electrode for HER without additional conductive additives and...
binders, thereby with high convenience. The CP@TiO2@MoS2 electrode exhibited excellent electrocatalytic activity with a small Tafel slope of 41.7 mV/dec. Especially, an ultrahigh cathodic current density of 550 mA/cm2 was delivered at a low overpotential of 0.25 V, which is very remarkable compared to other MoS2 based electrocatalysts in Table S1. Notably, the CP@TiO2@MoS2 electrode showed improved HER activity after 1000 CV sweeps, due to the decrease in charge-transfer resistance and the increase in effective surface area after electrochemical activation.

RESULTS AND DISCUSSION

Figure 1a shows the procedure for preparing CP@TiO2@MoS2 composite electrode. The CP substrate was first functionalized with a layer of ultrafine TiO2 nanoparticles, termed as CP@TiO2. Subsequently, a layer of densely packed and wrinkled MoS2 nanosheet was in situ grown on the electrode. The surface morphologies of CP, CP@TiO2, and CP@TiO2@MoS2 electrodes were further identified by scanning electronic microscopy (SEM, Figure 1b–d). The surface of pristine CP is clean and free of attached particles (Figure 1b). After treated with TiCl4, a thin layer of TiO2 nanoparticles were bonded onto CP substrate (Figure 1c). The average diameter of TiO2 nanoparticles is ∼10 nm, as shown in Figure S1. Figure 1d reveals the MoS2 nanolayer uniformly fixed on the CP@TiO2@MoS2 electrode through hydrothermal growth. Compared with bulk MoS2 material, the MoS2 nanolayer exhibits much larger active surface area and predominant edge sites, which are conducive to the electrocatalytic performances. Notably, the attachment of TiO2 nanoparticles on the CP is
Figure 3. Electrocatalytic HER performances. (a) Polarization curves of CP, CP@TiO2, CP@MoS2, CP@TiO2@MoS2, and GC@MoS2 electrodes at a scan rate of 5 mV/s, respectively. (b) Polarization curve of CP@TiO2@MoS2 electrode, showing a high cathodic current density of ~550 mA/cm² at an overpotential of 0.25 V. (c) Tafel plots of the electrodes calculated from a CV curves of (d) CP@MoS2 and (e) CP@TiO2@MoS2 electrodes collected in a selected potential range without Faradaic current at different scanning rates (10–60 mV/s), respectively. (f) Linear fitting of the capacitive current densities versus scanning rates of CP@MoS2 and CP@Ti@MoS2 electrodes calculated from d and e, respectively.

essential for the subsequent binding of MoS2 nanolayer, because the TiO2 nanolayer with high roughness can offer abundant high-energy nucleation sites for the nucleation and growth of MoS2 nanosheet. For comparison, MoS2 nanolayer was directly anchored onto the CP without the preceding step of TiO2 nanoparticle attachment (labeled as CP@MoS2), as shown in Figure S2, revealing that only a low density of MoS2 nanoplatelets were randomly grown on CP.

Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) studies were performed to investigate the structure of CP@TiO2@MoS2 electrode. The TEM image of MoS2 nanolayer (Figure 1e) reveals its ultrathin thickness and wrinkled, high-porosity structure. The cross-section HRTEM characterization of MoS2 nanolayer (Figure 1f) shows the interlayer spacing of MoS2 monolayers is 0.63 nm, which is in accordance with the (002) planes of hexagonal MoS2 (Figure 1g).21,22 Figure S3 displays a typical HRTEM image of the interface between TiO2 and MoS2, which clearly shows the surface of TiO2 nanoparticles are fully covered by MoS2 nanosheets and the contact between TiO2 nanoparticles and MoS2 nanosheets are very tight.

To identify the compositions of TiO2/MoS2 heterolayers, X-ray photoelectron spectroscopy (XPS) analysis was conducted (Figure 2a–d and Figure S4). The survey spectrum reveals the existence of C, Ti, O, Mo, and S elements (Figure 2a). The binding energies of Ti 2p1/2, Ti 2p3/2, and O 1s bands (Figure 2b and Figure S2b) are located at 456.7, 459, and 531.8 eV, respectively, indicating the formation of TiO2 nanoplanes.23 The positions of Mo 3d5/2, Mo 3d3/2, S 2s, S 2p3/2, and S 2p1/2 bands (Figure 3c, d) are also determined and listed in Table S2, in accordance with the intrinsic features of MoS2.24

Raman spectroscopic studies of CP@TiO2@MoS2 were also performed (Figure 2e, f). The D, G, and 2D bands of the CP substrate were revealed, while the peaks of Eg, B2g, and Eg are assigned to anatase-phase TiO2 (Figure 2e),25–29 which is in agreement with the XPS results. Additionally, the two Raman peaks at 380.1 and 404.1 cm⁻¹ are corresponding to the E2g and A1g modes of MoS2, respectively (Figure 2f). The E2g mode, also called the in-plane Mo–S phonon mode, is originated from the terrace-terminated MoS2 layers; the A1g mode, known as the out of plane Mo–S phonon mode, comes from the edge states of MoS2.26 As shown in Figure 2f, the integral intensities of the A1g mode is twice than that of the E2g mode, indicating that the MoS2 nanolayer is rich of edge sites.

The electrocatalytic HER activities of the electrodes were investigated in 0.5 M H2SO4 solution using a standard three-electrode setup. As another control sample, MoS2 nanofilm was deposited onto glassy carbon electrode (labeled as GC@MoS2, see the Experimental Methods section in the Supporting Information) and tested for comparison. Figure S5 shows the electrochemical impedance spectroscopy (EIS) analysis of these working electrodes, which reveals their excellent electrical conductivity. According to Figure S5, all the electrochemical data measured in this study were iR corrected. Figure 3a shows the polarization curves of CP, CP@TiO2, CP@MoS2, CP@TiO2@MoS2, and GC@MoS2 electrodes, respectively. Clearly, the pristine CP and CP@TiO2 electrodes display negligible HER activities, indicating that the high activity of CP@TiO2@MoS2 electrode comes from MoS2 nanolayer, rather than CP substrate or TiO2 layer. Moreover, the CP@TiO2@MoS2 electrode exhibits much higher HER activity than CP@MoS2 and GC@MoS2, suggesting that the rational designed MoS2/TiO2 heterolayers anchored on 3D interconnected CP is more favorable for HER. The overpotentials required for CP@MoS2, GC@MoS2, and CP@TiO2@MoS2 electrodes to reach a cathodic current density of 20 mA/cm² are 297, 344, and 188 mV, respectively. Because of the exceptional activity and conductivity, the CP@TiO2@MoS2 electrode delivers an ultrahigh current density of 550 mA/cm² at an overpotential of 250 mV (Figure 3b), as far as we know, which is record-breaking among the reported MoS2-based catalysts (Table S1).

In HER experiments, the release rate of generated H2 bubbles strongly affects the catalyst performance, especially under high cathodic current densities. Therefore, many previous studies employed a rotating disk electrode to dispel the H2 bubbles away, which is impractical for large-scale...
deployment. In this study, the TiO2/MoS2 heterolayers grown on CP can vigorously release the evolved H2 gas, as shown in Movie S1. Moreover, no obvious fluctuation can be found in the polarization curve of CP@TiO2@MoS2 electrode (Figure 3b), indicating the CP@TiO2@MoS2 electrode is very promising candidate for the use at large current densities.

The Tafel slopes of CP, CP@TiO2, CP@MoS2, CP@TiO2@MoS2 and GC@MoS2 electrodes were plotted using the following equation: $\eta = b \log(j) + a$, where η, j, and b are the overpotential, current density and Tafel slope, respectively. Figure 3c shows the following slopes of CP, CP@TiO2, CP@MoS2, CP@TiO2@MoS2, and GC@MoS2 electrodes are 149.2, 241.5, 73, 41.7, and 93 mV/dec, respectively. The CP and CP@TiO2 electrodes display high Tafel slopes owing to the poor HER activity. The Tafel slope of CP@TiO2@MoS2 is much lower than those of CP@MoS2, GC@MoS2 indicating its superior activity and the predominat Volmer–Heyrovsky mechanism during HER process.

Effective surface area plays an important role for HER performance. The effective surface area of electrode is generally proportional to the electrochemical double layer capacitance. Therefore, the relative effective surface areas of CP@MoS2 and CP@TiO2@MoS2 are compared by measuring the electrochemical double layer capacitances via cyclic voltammetry (CV) method (Figure 3d, e). A potential window between 0.4−0.5 V was selected for the test, because there is no Faradaic current in this range. The electrochemical double layer capacitances can be estimated from the slopes of the current density vs scan rate curves in Figure 3f. Clearly, the double layer capacitance of CP@TiO2@MoS2 is much larger than that of CP@MoS2 within the same potential range, indicating the TiO2 intermediate layer is very important for the growth of MoS2 nanolayer with large effective surface area.

To investigate the effect of TiO2 layer on the catalytic activity, we evaluated the turnover frequency (TOF) values of CP@MoS2 and CP@TiO2@MoS2. The number of the active sites was determined by the electrochemical method.29 Here, we propose a one-electron process for both reduction and oxidation, and then determined the upper limit of the active sites. Figure S6 shows the polarization curve normalized by the active sites and expressed in terms of TOF. Clearly, the CP@TiO2@MoS2 electrode exhibits higher catalytic activity than CP@MoS2 electrode. Specifically, the overpotentials required for the CP@MoS2 and CP@TiO2@MoS2 electrodes to reach a TOF value of 5 s⁻¹ are 467 and 225 mV, respectively, which further indicates the TiO2 intermediate layer is very important for the further decoration of MoS2 nanolayer and the improvement of electrocatalytic performance.

To evaluate the activation and durability in acidic environment, we continuously cycled the CP@TiO2@MoS2 electrode for 1000 CV sweeps. The polarization curves of CP@TiO2@MoS2 electrode were measured before and after cycling (Figure 4a). The activated CP@TiO2@MoS2 electrode delivered cathodic current densities of 20 and 550 mA/cm² at the overpotentials of 177 and 232 mV, respectively, showing a further enhanced HER activity compared to that of the initial state. To obtain further insight into the electrode kinetic, EIS analysis of CP@TiO2@MoS2 working electrode was carried out before and after 1000 CV sweeps (Figure 4b). The Nyquist plots show dramatical decrease of charge transfer resistance after the CV cycling, confirming the activation effect. The change of effective surface area was also investigated by measuring CV curves of activated CP@TiO2@MoS2 electrode at different scan rates, as shown in Figure S7. Clearly, the electrochemical double layer capacitance of the CP@TiO2@MoS2 electrode after 1000 CV sweeps is higher than that of initial state (Figure S7), suggesting the further enlarged effective surface area resulted from the electrolyte infiltration into the wrinkled and porous structure of MoS2 nanolayer. In result, the decreased charge-transfer resistance and the enhanced effective surface area synergistically enhanced the electrocatalytic activity of CP@TiO2@MoS2 electrode.

To exclude the influence of Pt wire counter electrode, the HER activity of CP@TiO2@MoS2 electrode was also tested with graphite rod as counter electrode. The CP@TiO2@MoS2 electrode still shows an improved HER electrocatalytic activity after 1000 CV sweeps, as shown in Figure S8. The CP@TiO2@MoS2 electrode before and after 1000 CV sweeps delivered the cathodic current density of 20 mA/cm² at the overpotentials of 248 and 219 mV, respectively. This result confirms that the CP@TiO2@MoS2 electrode can exhibit enhanced HER performance after CV cycling, in spite of the different counter electrodes. It should be noted that the CP@TiO2@MoS2 electrode exhibits a slightly higher HER electrocatalytic activity with the aid of Pt wire counter electrode than graphite rod counter electrode, which can be ascribed to the higher activity of Pt wire.

The long-term stability for HER was also evaluated. It has been confirmed that the CP@TiO2@MoS2 electrode exhibits slightly enhanced HER electrocatalytic performance after continuous CV cycling. As shown in Figure 4d, the time-dependent cathodic current density of CP@TiO2@MoS2 at a fixed overpotential of 175 mV was measured, shows an observable enhancement after the long-time testing of 40 h. At a higher overpotential of 250 mV, the current density still remained relatively stable for over 40 h, showing the potential for practical long-term applications.
CONCLUSION

In summary, we have rationally fabricated and anchored ultrathin TiO2/MoS2 heterolayers on conductive CP substrate as a self-standing electrode for high-efficiency electrocatalytic HER. The CP@TiO2@MoS2 electrode exhibited excellent electrocatalytic activity with small Tafel slope, remarkable cathodic current density at low overpotentials, and without obvious fluctuation in the polarization curve. Additionally, the electrode shows enhanced electrocatalytic activity after long-term CV sweeps, owing to the improved charge-transfer property and effective surface area. This work presents a novel scalable strategy for the fabrication of effective, durable, and cheap electrodes for electrocatalytic hydrogen production.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b19009.

SEM images, TEM images, XPS curves, electrochemical performances, and tables (PDF)

Movie S1, showing that TiO2/MoS2 heterolayers grown on CP can vigorously release the evolved H2 gas (AVI)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: j.liu@duke.edu (J. L.).
*E-mail: zhongjin@nju.edu.cn (Z. J.).

ORCID

Jia Liang: 0000-0002-4352-1581
Jie Liu: 0000-0003-0451-6111
Zhong Jin: 0000-0001-8860-8579

Author Contributions

J.L., C.W., and P.Z. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by National Key Research and Development Program of China (2017YFA0208200, 2016YFB0700600), National Key Basic Research Program (2015CB659300), Projects of NSFC (21403105, 21573108), China Postdoctoral Science Foundation (2015MS80412, 2015MS81769), Natural Science Foundation of Jiangsu Province for Young Scholars (BK20150583, BK20160647), Fundamental Research Funds for the Central Universities (201504018007), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

REFERENCES

Grain Boundary Structure of Molybdenum Disulphide Atomic Layers.
Nat. Mater. 2013, 12, 754.

