Co\textsubscript{x}Fe\textsubscript{y}N nanoparticles decorated on graphene sheets as high-performance electrocatalysts for the oxygen evolution reaction†

Haixia Liu, a Xinyao Lu, a Yi Hu, a Renpeng Chen, a Peiyang Zhao, a Lei Wang, a Guoyin Zhu, a Lianbo Ma b and Zhong Jin a, b

Exploring highly efficient non-noble metal based catalysts for the oxygen evolution reaction (OER) is of great importance for the development of renewable energy conversion technologies, such as water-splitting devices and rechargeable metal–air batteries. Co-based electrocatalysts have been regarded as a class of highly active and earth-abundant catalysts for the OER, but most of them are semiconductors or insulators that may limit the OER efficiency. Herein, we report the facile preparation of Co\textsubscript{x}Fe\textsubscript{y}N nanoparticles uniformly loaded on graphene sheets (Co\textsubscript{x}Fe\textsubscript{y}N/graphene) with amazing OER activity and stability, attributed to the intrinsic metallic characteristics. Through partial Fe heteroatom substitution in Co\textsubscript{3}Fe\textsubscript{1}N lattices, the disorder of the crystalline structure could be increased, thus forming a more favorable electronic structure for the catalysis of the OER. By adjusting the atomic ratios of Co/Fe elements, we found that the Co\textsubscript{3}Fe\textsubscript{1}N/graphene catalyst exhibited the highest activity for the OER under alkaline conditions among the Co\textsubscript{x}Fe\textsubscript{y}N/graphene samples, showing the lowest overpotential of 266 mV at 10 mA cm-2, the highest current density of 105.83 mA cm-2 at 1.53 V, and the lowest Tafel slope of 32 mV dec-1. Moreover, the freestanding electrodes of Co\textsubscript{x}Fe\textsubscript{y}N/graphene catalysts loaded on carbon paper (CP) also exhibited excellent long-term stability for the OER, and the overpotentials only slightly increased after continuously testing for 16 h at 10 mA cm-2. Among all the Co\textsubscript{x}Fe\textsubscript{y}N/graphene/CP samples, the Co\textsubscript{3}Fe\textsubscript{1}N/graphene/CP sample also displayed the best long-term stability and the lowest overpotential (270 mV) after 16 h. This work presents the great potential of Co\textsubscript{x}Fe\textsubscript{y}N/graphene catalysts as promising non-noble metal electrocatalysts for the OER for application in clean energy conversion devices.

1. Introduction

In recent years, the oxygen evolution reaction (OER) has drawn great research attention, attributed to its distinguishing characteristics in energy conversion and storage technologies, such as electrocatalytic water splitting devices,1–4 metal–air batteries5,6 and electrochemical CO\textsubscript{2} reduction systems.7 However, the OER process is usually subjected to its multi-proton-coupled electron transfer steps, causing very sluggish reaction kinetics and high overpotential.8,9 Thus, the development of an effective electrocatalyst to promote the reaction rate is necessary. Up to now, the most efficient electrocatalysts for the OER are still noble metal oxides, such as IrO\textsubscript{2} and RuO\textsubscript{2}.10–13 However, the rareness and high costs of noble metals severely hinder their commercial application. Therefore, it is highly desirable to develop advanced electrocatalysts based on non-noble metal materials with low overpotential and superior stability.

Over the past few years, owing to the unique electron structure and special e\textsubscript{g} orbitals, nickel and cobalt based materials have been widely investigated as promising non-noble catalysts for the OER. Especially, layered double hydroxides (LDHs) and metal oxides containing Fe, Co, or Ni species have been regarded as promising OER catalysts.14–27 However, an intrinsic disadvantage of Ni or Co based LDHs and metal oxides is their poor electron conductivity. These materials are normally semi-conducting or insulating, which hinders the electron transfer from the electrocatalysts to the support electrode, thereby greatly limiting the catalytic efficiency. Compared with Ni or Co-based oxides and hydroxides, their metal nitrides exhibit high activity for the OER, attributed to their high electrical conductivity and good electrocatalytic stability.28–30 Recently, great efforts have been focused on the exploration of metal nitride catalysts, such as Ni\textsubscript{3}N nanosheets,28 Ni\textsubscript{2}FeN nanosheets,31 3D porous NiCo\textsubscript{2}N,29 and Co\textsubscript{2}N nanowires,30 for the OER. Moreover, density functional theory (DFT) calculations demonstrate that
the metallic characteristics of metallic nitrides result from the density of states across the Fermi level.26 It is known that doping Fe element in Ni(OH)\textsubscript{2} and NiOOH may boost the electrocatalytic activity for the OER,3,16,32-34 because the partial substitution of Fe element may affect the local electronic structure of Ni-based materials, and the introduction of Fe heteroatoms can increase the number of active sites and enhance the charge-transfer kinetics between Ni and Fe sites.35 Similarly, with the substitution of Fe ions into Co\textsubscript{3}O\textsubscript{4}, the OER activity is significantly improved and the Tafel slope is decreased.36 In Fe mixed Co-based catalysts, Co-based materials can serve as the electrically conductive and chemically stable hosts to enhance the activity of Fe active sites.37 We suppose that bimetalllic nitrides may exhibit even better OER activity than single metal nitrides, because the valence and electronic states of the metal elements could be finely tuned. Furthermore, with the introduction of other metal species, the structure disorder would be increased, thus providing more active sites for the OER.

Following this line of thought, here we demonstrate the preparation of Co\textsubscript{0.7}Fe\textsubscript{0.3}N nanoparticles uniformly loaded on graphene nanosheets (Co\textsubscript{0.7}Fe\textsubscript{0.3}N/graphene) as efficient electrocatalysts, which can exhibit amazing OER activity and stability as a result of the intrinsic metallic characteristics. The Co\textsubscript{0.7}Fe\textsubscript{0.3}N/graphene electrocatalysts were synthesized by the thermal ammonolysis of ultrathin Co\textsubscript{0.7}Fe\textsubscript{0.3}-LDH nanosheets loaded on graphene nanosheets. The graphene nanosheets with a two-dimensional (2D) conductive architecture can prevent the aggregation of Co\textsubscript{0.7}Fe\textsubscript{0.3}N nanoparticles,38 and promoted ion diffusion and electron transfer;39 therefore the active surface area and electrocatalytic activity of the catalysts can be greatly improved. Moreover, with Fe element doping, the disorder degree of the crystalline structure is increased, thus forming a unique electronic structure for extraordinarily high electrocatalytic activity. This work illustrates that the Co\textsubscript{0.7}Fe\textsubscript{0.3}N/graphene catalyst is a promising non-noble metal electrocatalyst for the OER in energy conversion devices (Table S1).1+

We further anchored the Co\textsubscript{0.7}Fe\textsubscript{0.3}N/graphene samples onto conductive carbon paper (Co\textsubscript{0.7}Fe\textsubscript{0.3}N/graphene/CP) to prevent the exfoliation of catalysts by oxygen bubbles generated during long-term testing. The Co\textsubscript{0.7}Fe\textsubscript{0.3}N/graphene/CP electrodes exhibit excellent long-term stability, with the overpotentials only increasing by \(\sim 5 \text{ mV} \) during the continuous test from 4 to 16 h at 10 mA cm2. Among all the Co\textsubscript{0.7}Fe\textsubscript{0.3}N/graphene/CP samples, the Co\textsubscript{0.7}Fe\textsubscript{0.3}N/graphene/CP electrode still displays the best activity for the OER, with the lowest overpotential of 270 mV.

2. Experimental section

2.1 Chemicals

All chemicals were of analytical grade and were bought from Sinopharm Chemical Reagent Corp. and used without further purification.

2.2 Preparation of graphene nanosheets

Firstly, graphene oxide (GO) nanosheets were synthesized with natural graphite flakes by a modified Hummers’ method.40 Then, 30 mg GO was dissolved in 50 mL deionized water and stirred for 10 min, and excess NaBH\textsubscript{4} was put into the solution to reduce GO and obtain graphene nanosheets. The mixture was stirred for 2 h to decompose the remaining NaBH\textsubscript{4}, and then the pH of the solution was tuned to neutral by adding 0.1 M HNO\textsubscript{3}. A suitable amount of ethanol was added into the solution (\(V_{\text{H}_2\text{O}} : V_{\text{EtoH}} = 9 : 1 \)) and then ultrasonicated for 5 min to form a homogeneous suspension.

2.3 Preparation of ultrathin Co\textsubscript{0.7}Fe\textsubscript{0.3}-LDH/graphene nanosheets

In a typical procedure, the prescribed amounts of Co(NO\textsubscript{3})\textsubscript{2}\textsuperscript{·6H\textsubscript{2}O} and Fe(NO\textsubscript{3})\textsubscript{3}\textsuperscript{·9H\textsubscript{2}O} with a mole number of 2.0 mmol were added into the above-prepared graphene suspension. For the preparation of different samples, the ratios of Co2+ and Fe3+ were adjusted to 4 : 0, 3.6 : 0.4, 3 : 1, 2 : 2, 1 : 3, and 0 : 1, respectively. Triethanolamine (TEA) with a mole number 3 times higher than that of Fe3+ was added into the mixture. Then, 16 mmol of hexamethylenetetramine (HMT) were added to the mixture and stirred for 0.5 h. The mixture was sealed into a stainless-steel Teflon-lined autoclave, maintained at 95 °C for 3 h and then cooled down naturally to room temperature. The products were collected by centrifugation at 3000 rpm for 5 min, washed with ethanol and deionized water several times, and then freeze-dried under vacuum at \(-40 \text{ °C} \) overnight.

2.4 Preparation of Co\textsubscript{0.7}Fe\textsubscript{0.3}N/graphene samples

The Co\textsubscript{0.7}Fe\textsubscript{0.3}-LDH/graphene nanosheets were placed in a tube furnace, heated to 600 °C under 200 sccm N\textsubscript{2} flow with a heating rate of 3 °C min-1, and maintained at this temperature for 3 h with a continuous NH\textsubscript{3} flow of 150 sccm. Then, the tube furnace was cooled down to room temperature under 200 sccm N\textsubscript{2} flow.

2.5 Characterization

The morphology and compositions of the products were characterized by transmission electron microscopy (TEM, JEM-2100), scanning electron microscopy (SEM, Hitachi-S4800) and energy-dispersive X-ray spectroscopy (EDX) coupled with SEM. The samples were characterized by X-ray diffraction (XRD, Bruker D8 Advance A25) using a Co K\textalpha\ (\(\lambda = 1.78897 \text{ Å} \)) radiation source with an Fe filter of 0.02 mm thickness. X-ray photoelectron spectra (XPS) were obtained using a PHI-5000 VersaProbe X-ray photoelectron spectrometer with an Al K\textalpha X-ray radiation source. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was performed on an Optima 5300DV, and the samples were dissolved in dilute nitric acid before testing.

2.6 Electrochemical measurements

Typically, 8.0 mg of Co\textsubscript{0.7}Fe\textsubscript{0.3}N/graphene catalysts were dispersed in a 1.0 mL mixed solvent of ethanol and deionized water (\(V_{\text{ethanol}} : V_{\text{H}_2\text{O}} = 9 : 1 \)) comprising 80 \(\mu \)L Nafion (3%), and then ultrasonicated for 0.5 h. The mixture was dropped onto a glassy carbon (GC) based rotating disk electrode (RDE) of 5 mm diameter with a mass loading of 0.2 mg cm-2. Alternatively, to prepare free-standing Co\textsubscript{0.7}Fe\textsubscript{0.3}N/graphene/CP electrodes, the
catalyst inks were dropped onto conductive CP (1 × 1 cm) with a mass loading of 0.5 mg cm⁻². The electrochemical measurements were performed in a standard three-electrode reaction cell connected to an electrochemical workstation (Chenhua CHI-760E). The electrolyte was 1.0 M KOH solution. Pt foil was used as the counter electrode. The reference electrode was a Hg/HgO electrode (MMO) filled with 1.0 M KOH. Prior to tests, high-purity N₂ was bubbled through the electrolyte to eliminate dissolved O₂ and cyclic voltammetry (CV) was performed between 0 and 0.7 V vs. MMO at a scan rate of 200 mV s⁻¹ for 30 cycles to clean the surface of the catalysts.

For OER tests, 1.0 M KOH electrolyte was first bubbled by O₂ flow to ensure the O₂/H₂O equilibrium potential at 1.23 V vs. the reversible hydrogen electrode (RHE), and then linear sweep voltammetry (LSV) was carried out with a GC based RDE at a rotating speed of 1600 rpm at a scan rate of 10 mV s⁻¹ between 0 and 0.7 V vs. MMO. The LSV analysis of CoₓFeᵧLDH/graphene/CP electrodes was also carried out between 0 and 0.7 V vs. MMO. The percentage of IR compensation was 80%, according to the equation E = E₀ – iR × 80%, where E is the IR-corrected potential, E₀ is the potential before IR correction, i is the current density, and R is the solution resistance. The activity of the catalysts was normalized by their geometric areas. The electrochemical active surface area (ECSA) was also estimated by the electrochemical double-layer capacitance (Cdl), which was investigated on the basis of CV curves recorded at different scan rates from 5 to 100 mV s⁻¹ in the non-faradaic potential region. The value of Cdl was computed using the equation iₗ = νCdl. Chronopotentiometric measurements were recorded at a current density of 10 mA cm⁻². The obtained potentials (vs. MMO) were converted to potentials vs. RHE using the Nernst equation:

$$E_{\text{RHE}} = E_{\text{MMO}} + 0.059pH + E_{\text{MMO}}^0$$

(1)

and the overpotentials were calculated as below:

$$\eta = E_{\text{MMO}} + 0.059pH + E_{\text{MMO}}^0 - 1.23V$$

$$E_{\text{MMO}} = E_{\text{MMO}} + 0.059pH + 0.098V - 1.23V$$

(2)

3. Results and discussion
3.1 Preparation and characterization of the CoₓFeᵧN/graphene catalysts
The experimental process for the preparation of CoₓFeᵧN/graphene catalysts is detailed in the Experimental section. Firstly, ultrathin CoₓFeᵧ/LDH nanosheets were easily synthesized by a solution-phase method, which can easily control the atomic proportions of Co and Fe species. In this way, CoₓFeᵧ/LDH nanosheets with different x : y ratios (from 4 : 0, 3.6 : 0.4, 3 : 1, 2 : 2, and 1 : 3 to 0 : 4) were prepared to compare the variation of electrocatalytic properties. To prevent the aggregation and enhance the conductivity of ultrathin LDH nanosheets, graphene nanosheets were added into the reaction vessel to obtain CoₓFeᵧ/LDH/graphene composites, as shown in Fig. S1.† Through the adding of graphene, the specific surface area, the number of exposed active sites, and the charge transfer properties of the products can be greatly increased. Subsequently, the ultrathin CoₓFeᵧ/LDH nanosheets were converted to CoₓFeᵧN nanoparticles and decorated on graphene via thermal treatment in an NH₃ atmosphere at 600 °C for 3 h, as shown in Fig. 1a–f. Scanning electron microscopy (SEM) images show that the CoₓFeᵧN nanoparticles are loaded on the surface of graphene uniformly. With the increase of Fe content, the average diameter of CoₓFeᵧN nanoparticles also increased from about 10 nm to 30 nm. As presented in Fig. 1g–l, the high-resolution transmission electron microscopy (HRTEM) images show the clear crystalline lattices of CoₓFeᵧN nanoparticles. In Fig. 1g, the lattice spacing was measured to be 0.2247 nm, which was indexed to the (111) planes of CoₓFeᵧN.† Fig. 1h exhibits the (111) plane spacing of CoₓFeᵧN (0.2290 nm), which is slightly narrower than that of CoₓN owing to the introduction of Fe atoms. As the atomic ratio of Co and Fe further decreased from 3 : 1 to 2 : 2, 1 : 3 and 0 : 4 (Fig. 1i–l), the crystalline phase of the samples matched with Fe₄N (JCPDF: 89-7097) instead of CoₓN, and the lattice fringes were indexed to (220) planes. With the increase of Fe content, the (220) lattice spacings of these four samples become broader, in accordance with the XRD results in Fig. 2a and b. We also prepared a control sample of CoₓFeᵧN without graphene by treating pristine CoₓFeᵧ-LDH in an NH₃ atmosphere at 600 °C for 3 h, and it would aggregate and turn into large particles (Fig. S2†). This indicates that the introduction of graphene can efficiently prevent the aggregation of CoₓFeᵧN nanoparticles.

The X-ray diffraction (XRD) pattern of CoₓN/graphene and CoₓFeᵧN/graphene samples exhibit typical diffraction peaks at around 52.0° and 60.3° (Fig. 2a and b), corresponding to the (111) and (200) planes of CoₓN, respectively. As the Co/Fe ratio changed from 4 : 0 to 3 : 1, the XRD peaks of CoₓN(111) and (200) planes moved to lower angles and became weaker. Finally, the peaks of CoₓN (111) and (200) planes disappeared in the XRD spectrum of the CoₓFeᵧN/graphene sample. In contrast, the peaks corresponding to Fe₄N (220) and (440) planes first appeared in the XRD spectrum of the CoₓFeᵧN/graphene sample, indicating the mixed crystalline phases of this sample. This peak moved to lower angles and became stronger when the Co/Fe ratio further decreased from 3 : 1 to 0 : 4, which demonstrates that the change of Fe content in CoₓFeᵧN nanoparticles can greatly influence the lattice spacings and degree of crystallinity. Specifically, for the Fe₄N/graphene sample, the strong peaks at 52.5° and 77.4° are indexed to the (220) and (440) planes of Fe₄N (JCPDF: 89-7097), respectively; the weak peaks at 48.2° and 50.7° can be indexed to the (002) and (101) planes of Fe₄N (JCPDF: 01-1236), respectively; the weak peak at 56.2° corresponds to the (200) planes of Fe₄N (JCPDF: 03-0955). Therefore, it reveals that the Fe₄N/graphene sample actually contains a mixture of Fe₄N, Fe₄N and Fe₄N.
were in accordance with the molar proportions of the initial reactants. The chemical valence states of the samples were examined by X-ray photoelectron spectroscopy (XPS). In the Co 2p region (Fig. 2c and S5†), the peaks at around 779.0 eV and 794.5 eV are attributed to Co 2p3/2 and Co 2p1/2, respectively, and the peaks at around 785.6 and 801.0 eV are satellite peaks. The peaks at approximately 780.0 eV and 795.2 eV are assigned to Co(+2), and the peaks at around 778.3 eV and 793.4 eV are in accordance with those of Co(0) reduced during thermal ammonolysis. In the Fe 2p region (Fig. 2d and S5†), the peaks at approximately 709.0 eV and 723.0 eV are assigned to Fe 2p3/2 and Fe 2p1/2, respectively, while the peak at around 719.0 eV is the satellite peak. The peaks at approximately 710.2 and 724.3 eV are assigned to Fe(+3), and the peaks at approximately 709.0 eV and 722.0 eV are ascribed to Fe(0).† In the N 1s XPS spectra (Fig. S4 and S7†), the peaks located at 397.8, 399.0 and 396.6 eV are assigned to the N species in metal nitrides. The control sample of pristine graphene treated at 600 °C under an ammonia atmosphere for 3 h shows no sign of N doping, as presented in the EDX spectrum (Fig. S8†). This indicates that no obvious nitrogen doping has occurred on graphene sheets, because previous research studies have revealed that doping nitrogen into graphene by ammonia treatment normally happens at temperatures above 900 °C.† Therefore, the influence of N-doping in graphene on the OER performance of the CoFeN/graphene samples is minimal and can be ignored.

3.2 Electrocatalytic performance of the CoFeN/graphene catalysts for the OER

The electrocatalytic activity of the CoFeN/graphene catalysts for the OER was investigated in a standard three-electrode system with O2 saturated 1.0 M KOH solution (as detailed in the ESI†). During the OER tests, the rotating speed of the RDE was maintained at 1600 rpm to remove oxygen bubbles.
generated by the catalysts. As presented in Fig. 3a–c, the iR-corrected OER polarization curves were recorded at a scan rate of 10 mV s$^{-1}$. The current density was normalized by the geometric area of the electrode. Among all of the Co$_x$Fe$_y$N/graphene catalysts, the Co$_3$Fe$_1$N/graphene sample exhibited the lowest overpotential of 266 mV at 10 mA cm$^{-2}$, making it superior to Co$_4$N/graphene (336 mV), Co$_{3.6}$Fe$_{0.4}$N/graphene (283 mV), Co$_2$Fe$_2$N/graphene (310 mV), Co$_1$Fe$_3$N/graphene (370 mV), and Co$_3$Fe$_1$N (350 mV). The current density of the Fe$_4$N/graphene sample cannot reach 10 mA cm$^{-2}$ in the testing potential range, indicating its low electrocatalytic activity. At a fixed potential of 1.53 V vs. RHE (corresponding to an overpotential of 300 mV), the current density of the Co$_3$Fe$_1$N/graphene sample is 105.83 mA cm$^{-2}$, much higher than those of Co$_4$N/graphene (5.04 mA cm$^{-2}$), Co$_{3.6}$Fe$_{0.4}$N/graphene (30.26 mA cm$^{-2}$), Co$_2$Fe$_2$N/graphene (7.00 mA cm$^{-2}$), Co$_1$Fe$_3$N/graphene (0.26 mA cm$^{-2}$), Fe$_4$N/graphene (0.74 mA cm$^{-2}$) and Co$_3$Fe$_1$N (0.71 mA cm$^{-2}$). Among all of the Co$_x$Fe$_y$N/graphene samples, Co$_3$Fe$_1$N/graphene exhibits the largest C_{dl} value (Fig. S9 and S10†), meaning the largest electrochemically active surface area, and it would contribute to the enhancement of electrochemical activity. Compared to Co$_3$Fe$_1$N/graphene, the control sample of Co$_3$Fe$_1$N without graphene shows inferior electrocatalytic activity (Fig. 3a). This result confirms that the graphene support with a 2D conductive architecture can increase the specific surface area and boost the electron transfer capability of Co$_3$Fe$_1$N catalysts, thus improving the OER performance.39 As presented in Fig. 3b, the magnified OER polarization curve of Co$_4$N/graphene shows two peaks at about 1.03 V and 1.10 V, which are attributed to the oxidation of surface Co species into CoOOH and then CoO$_2$.46,47 With the introduction of Fe atoms, the Co oxidation peaks of Co$_{3.6}$Fe$_{0.4}$N/graphene and Co$_3$Fe$_1$N/graphene shifted to higher potentials, revealing that the incorporation of Fe atoms greatly changed the electronic structure of the Co$_x$Fe$_y$N based catalysts. This indicates that the strong interactions between Co and Fe atoms could improve the electrochemical stability of surface Co(2+) and Co(0) species, and make the Co oxidation more difficult.37 However, as the Fe content further increases to \geq50%, the Co oxidation peaks in the OER polarization curves of Co$_2$Fe$_2$N/graphene, Co$_1$Fe$_3$N/graphene and Fe$_4$N/graphene samples will disappear and the electrocatalytic activity will decrease. This should be ascribed to the coverage decrease of surface Co species and the variation of the crystalline phase, which is well consistent with the disappearance of the XRD peaks of the Co$_4$N phase in the Co$_2$Fe$_2$N/graphene sample (Fig. 2a and b).

As shown in Fig. 3d, the Tafel slope of the Co$_3$Fe$_1$N/graphene sample is 32 mV dec$^{-1}$, which is lower than those of Co$_{3.6}$Fe$_{0.4}$N/
graphene (38 mV dec$^{-1}$), Co$_{2}$Fe$_{2}$N/graphene (42 mV dec$^{-1}$), Co$_{4}$Fe$_{3}$N/graphene (61 mV dec$^{-1}$), Fe$_{4}$N/graphene (93 mV dec$^{-1}$) and Co$_{4}$N/graphene (106 mV dec$^{-1}$). The lowest onset potential and Tafel slope confirm that the Co$_{3}$Fe$_{1}$N/graphene sample has the highest OER activity among all of the Co$_{x}$Fe$_{y}$N/graphene samples. The Tafel plot is normally used to deduce the rate-limiting factors in the four electron transfer steps of the OER, as illustrated by the classical Butler–Volmer equation below:

$$\text{Tafel slope (mV dec}^{-1} = \frac{59}{(n' + \alpha)} \text{ (3)}$$

where n' is the number of single-electron transfer steps prior to the rate-determining step and α is the symmetry/transfer coefficient (typically taken as 0.5). It has been predicted that the Tafel slopes close to 24 mV dec$^{-1}$ and 40 mV dec$^{-1}$ indicate that the third electron transfer and the second electron transfer are the rate-determining steps, respectively. And the Tafel slope near 60 mV dec$^{-1}$ is related to a rate-limiting step following the first electron transfer. In Fig. 3d, the Tafel slope of the Co$_{3}$Fe$_{1}$N/graphene sample is 32 mV dec$^{-1}$, which is between 24 mV dec$^{-1}$ and 40 mV dec$^{-1}$; we thus conclude that both the second electron transfer and the third electron transfer are the rate-limiting factors. The Tafel slopes of Co$_{3.6}$Fe$_{0.4}$N/graphene and Co$_{2}$Fe$_{2}$N/graphene are 38 mV dec$^{-1}$ and 42 mV dec$^{-1}$, respectively, which are near 40 mV dec$^{-1}$, indicating that the second electron transfer is the rate-determining step. The Tafel slope of the Co$_{1}$Fe$_{3}$N/graphene sample (61 mV dec$^{-1}$) is near 60 mV dec$^{-1}$, verifying that the first electron transfer followed by chemical absorption is the rate-limiting step.

Notably, despite the similar catalyst configuration, the Co$_{3}$Fe$_{1}$N/graphene sample shows the lowest Tafel slope among all of the samples, which could be attributed to the optimal charge transfer on the catalyst surface. It has been revealed that transition metal nitrides usually have better conductivity and corrosion resistance compared to the corresponding metal oxides and hydroxides.28 DFT calculation studies also indicate the metallic characteristics of transition metal nitrides, owing to the density of states (DoS) across the Fermi level.28,30,42 This is in accordance with the XPS results of the Co$_{x}$Fe$_{y}$N/graphene samples, which confirms that the Co species is in the Co(1+2) and Co(0) states, and the Fe species is in the Fe(+3) and Fe(0) states. Benefitting from the intrinsic metallic character of Co$_{x}$Fe$_{y}$N nanoparticles and the good conductivity of graphene sheets, the Co$_{x}$Fe$_{y}$N/graphene catalysts exhibit fast charge transport properties and high catalytic activity. Moreover, the highest OER activity of the Co$_{3}$Fe$_{1}$N/graphene sample indicates...
that the composition optimization of the metal nitride catalyst is a feasible way to improve the catalytic activity for the OER. Compared with Co$_x$N/graphene and Fe$_x$N/graphene, the other bimetallic Co$_x$Fe$_y$N/graphene samples also show better electrocatalytic activity. These results indicate that the incorporation of Fe ions into Co$_x$Fe$_y$N can greatly influence the chemical valences and electronic states of the catalyst to create more active sites and facilitate rapid charge transfer, thus boosting the electrocatalytic activity. On the other hand, the reaction kinetics of the OER could be promoted by the graphene sheets serving as a conductive support, which provides smooth pathways for electron transport and prevents the aggregation of Co$_x$Fe$_y$N nanoparticles. In brief, the improved catalytic performance should be attributed to the synergistic effect of introduced Fe species and 2D graphene support.

3.3 Electrocatalytic performance of the free-standing Co$_x$Fe$_y$N/graphene/CP electrodes for the OER

Apart from the electrocatalytic activity, the stability of the catalyst is also an important factor for practical applications. During long-term chronopotentiometric tests, the Co$_x$Fe$_y$N/graphene catalysts attached on GC based RDEs may be stripped off due to the generation of a large number of O$_2$ bubbles. Therefore, we loaded the Co$_x$Fe$_y$N/graphene catalysts on carbon paper (CP) to form free-standing Co$_x$Fe$_y$N/graphene/CP electrodes with a large surface area, high conductivity and good adhesion, which can efficiently prevent the exfoliation of catalysts by O$_2$ bubbles. The OER performances of the Co$_x$Fe$_y$N/graphene/CP electrodes were systematically measured in O$_2$ saturated 1.0 M KOH solution (Fig. 4). The iR-corrected OER polarization curves of the Co$_x$Fe$_y$N/graphene/CP electrodes (Fig. 4a) showed similar trends compared to those of Co$_x$Fe$_y$N/graphene catalysts loaded on GC electrodes. The Co$_3$Fe$_1$N/graphene/CP electrode exhibited the highest OER activity among all the electrodes, delivering an overpotential (270 mV at 20 mA cm$^{-2}$) lower than Co$_4$N/graphene/CP (336 mV), Co$_{1.8}$Fe$_{0.4}$N/graphene/CP (291 mV), Co$_x$Fe$_y$N/graphene/CP (309 mV), Co$_{0.6}$Fe$_{0.4}$N/graphene/CP (347 mV) and Fe$_4$N/graphene/CP (>400 mV). At a fixed potential of 1.53 V vs. RHE (corresponding to an overpotential of 300 mV), the current density of the Co$_3$Fe$_1$N/graphene/CP electrode is measured to be 73.47 mA cm$^{-2}$, which is much higher than those of Co$_x$N/graphene/CP.

![Figure 4](image_url)
adsorption, accumulation and desorption of O2 bubbles on the graphene/CP electrodes are slightly lower than those of the graphene/CP > Co4N/graphene/CP. The chronopotentiometric tests of the CoFe2N/graphene/CP electrodes were carried out (Fig. 4c), showing well-maintained stability during long-term OER tests. This work provides a promising route to prepare high-performance hybrid electrocatalysts based on non-noble metal nitrides for the OER for application in clean energy conversion devices.

4. Conclusions

In summary, we have synthesized a series of CoFe3N/graphene catalysts with controlled morphology and compositions through the thermal ammonolysis of ultrathin CoFe2-LDH nanosheets grown on graphene. Owing to the intrinsic metallic characteristics and the electronic structure modification by Fe atoms, the CoFe3N/graphene catalysts exhibited improved electrocatalytic activity for the OER. Among the samples with different Co/Fe ratios, the CoFe3N/graphene sample showed the lowest overpotential and Tafel slope. Moreover, the CoFe3N/graphene/CP electrodes also demonstrated remarkable stability during long-term OER tests. This work provides a promising route to prepare high-performance hybrid electrocatalysts based on non-noble metal nitrides for the OER for application in clean energy conversion devices.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0208200, 2016YFB0700600, and 2015CB659300), Projects of NSFC (21802068, 21872069, 51761103104, and 21573108), Natural Science Foundation of Jiangsu Province (BK20180008 and BK20160643), High-Level Entrepreneurial and Innovative Talents Program of Jiangsu Province, and the Fundamental Research Funds for the Central Universities of China.

Notes and references

