News

【Class Assignment】Molecular Spectroscopy Class Assignment for the students in 2018.

发布时间:2018-05-28 

 

     2017级研究生文献汇报安排(updated on Apr. 2, 2018)

 Fluorescence probes for in vitro and in vivo bio-imaging I – chemical probes

陈承涛

1.

NitroxylFluor: A Thiol-Based Fluorescent Probe for Live-Cell Imaging of Nitroxyl, 2017, J. Am. Chem. Soc, 139, 18476-18479.

陈磊

2.

A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing, Journal of the American Chemical Society, 2015, 137, 10767-10776.

陈丽先

3.

Ultrasensitive Measurement of Ca2+ Influx into Lipid Vesicles Induced by Protein Aggregates, Angew. Chem. Int. Ed., 2017, 56, 7750-7754.

程若瑜

4.

Directed self-assembly of fluorescence responsive nanoparticles and their use for real-time surface and cellular imaging, Nature Communications, 2017, 8, 1885.

党朋云

5.

Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics, Nature Chemistry, 2017, 9, 279-286.

费佳俊

6.

Quantitative real-time imaging of glutathione, Nature Communications, 2017, 8, 16087.

付昊旻

7.

A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals, Nature Materials, 2014, 13, 204-212.

Fluorescence probes for in vitro and in vivo bio-imaging I –Fluorescent proteins

高迪

8.

Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins, Nature Methods, 2010, 7, 643-649.

髙晓瑜

9.

Protein induced fluorescence enhancement as a single molecule assay with short distance sensitivity, PNAS, 2011, 108, 7414-7418.

郭展辰

10.

mScarlet: a bright monomeric red fluorescent protein for cellular imaging, Nature methods, 2017, 14, 53-56.

黄静

11.

Genetically Encoded Fluorescent RNA Sensor for Ratiometric Imaging of MicroRNA in Living Tumor Cells, J. Am. Chem. Soc., 2017, 139, 9779.

黄晓丹

12.

A General Mechanism of Photoconversion of Green-to-Red Fluorescent Proteins Based on Blue and Infrared Light Reduces Phototoxicity in Live-Cell Single-Molecule Imaging, Angew Chem Int Ed, 2017, 56, 11634-11639.

黄煜晨

13.

Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis, 2017, Nature Communications, 8, 1412.

贾文东

14.

Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo, 2017, Nature Communications, 8, 1422.

Single molecule fluorescence technology and applications

金融

15.

Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering, Nature Commun., 2015, 6, 6992.

李玉姨

16.

Stepwise growth of surface-grafted DNA nanotubes visualized at the single-molecule level, Nature Chem., 2015, 7, 295-300.

李钰

17.

Reversible Reconfiguration of DNA Origami Nanochambers Monitored by Single-Molecule FRET, Angew. Chem. Int. Ed., 2015, 54, 3592-3597.

刘娟

18.

A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy, Nature Methods, 2011, 8, 143-146.

马秋琳

19.

A DNA origami platform for quantifying protein copy number in super-resolution, Nature Methods, 2017, 14, 789.

蒙甜甜

20.

Real-Time Imaging of Single-Molecule Enzyme Cascade Using a DNA Origami Raft, J. Am. Chem. Soc, 2017, 139, 17525-17532.

沈琦

21.

Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging, 2017, Nature Communications, 8, 1731.

SMF for nanocatalysis

宋淑婷

22.

Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts, Nature Nanotechnology, 2012, 7, 237-241.

唐卓栋

23.

Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming, J. Am. Chem. Soc., 2015, 137, 6559-6568.

陶静

24.

The heat released during catalytic turnover enhances the diffusion of an enzyme, Nature, 2015, 517, 227-230.

王宇

25.

Super-Resolution Mapping of Photogenerated Electron and HoleSeparation in Single Metal−Semiconductor Nanocatalysts, J. Am. Chem. Soc., 2014, 136, 1398-1340

吴明洋

26.

Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes, Nature 2016, 530, 77-80

邢永芳

27.

Geometry-Assisted Three-Dimensional Superlocalization Imaging of Single-Molecule Catalysis on Modular Multilayer Nanocatalysts, Angew. Chem. Int. Ed., 2014, 53, 12865-12869.

薛铁瑛

28.

Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity, Proc. Natl. Acad. Sci. USA,2015, 112, 89598964

Plasmonic Imaging for biological and chemical applications

张倩莹

29.

Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level, PNAS, 2009, 106, 17735-17740.

张越

30.

A nanoplasmonic molecular ruler formeasuring nuclease activity and DNA footprinting, Nature Nanotechnology, 2006, 1, 47-52.

周玲俐

31.

Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRVrestriction enzymes, PNAS, 2007, 104, 2667-2672.

周炎洁

32.

Electrodeposition of Single-Metal Nanoparticles on Stable Protein 1 Membranes: Application of Plasmonic Sensing by Single Nanoparticles, Angew. Chem. Int. Ed., 2012, 51, 140-144.

周韵露

33.

Highly sensitive sulphide mapping in live cells by kinetic spectral analysis of single Au-Ag core-shell nanoparticles, Nature Communications, 2013, 4, 1708.

朱清玥

34.

Intermittent photocatalytic activity of single CdS nanoparticles, Proc. Natl. Acad. Sci. USA, 2017, 114, 10566-10571

潘政

35.

Nanobubbles: An Effective Way to Study Gas-Generating Catalysis on a Single Nanoparticle, J. Am. Chem. Soc., 2017, 139, 14277.

Electrochemistry and Electrochemiluminscence

陈晶

36.

Imaging Local Electrochemical Current via Surface Plasmon Resonance, Science, 2010, 327, 1363-1366.

陈明明

37.

Single Gold Nanorod Charge Modulation in an Ion Gel Device. Nano Lett., 2016, 16, 6863-6869

陈思思

38.

Correlated Electrochemical and Optical Detection Reveals the Chemical Reactivity of Individual Silver Nanoparticles, J. Am. Chem. Soc., 2016, 138, 3478-3483.

程晓阳

39.

Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling, J. Am. Chem. Soc, 2017, 139, 186-192.

顾自宽

40.

Imaging Electrogenerated Chemiluminescence at Single Gold Nanowire Electrodes, Nano Lett, 2015, 6110-6115.

李鹏飞

41.

Single Cell Electrochemiluminescence Imaging: From the Proof-of-Concept to Disposable Device-Based Analysis, J. Am. Chem. Soc, 2017, 139, 16380-16387.

刘惠普

42.

Electrogenerated Chemiluminescence Imaging of Electrocatalysis at a Single Au-Pt Janus Nanoparticle, Angew Chem Int Ed, 2018, DOI: 10.1002/anie.201800706

Nanoplasmonics

刘沙沙

43.

Non-blinking quantum dot with a plasmonic nanoshell resonator, Nature Nanotech., 2015, 10, 170-175.

鲁选朝

44

Nanoantenna-enhanced gas sensing in a singletailored nanofocus, Nature Materials, 2011, 10, 631-636.

牟含章

45

Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nature Photonics, 2009, 3, 654-657.

王谷羽

46

Thousand-fold Enhancement of Single-Molecule Fluorescence Near a Single Gold Nanorod, Angew. Chem. Int. Ed., 2013, 52, 1217-1221.

王惠

47

DNA-Directed Assembly of Gold Nanohalo for Quantitative Plasmonic Imaging of Single-Particle Catalysis, JACS, 2015, 137, 4292-4295.

王瑾

48

Direct Observation of the Orientation Dynamics of Single Protein-Coated Nanoparticles at Liquid/Solid Interfaces, Angew. Chem. Int. Ed., 2014, 53, 6951-6955.

王旻萱

49

Plasmon Resonance Scattering Spectroscopy at the Single-Nanoparticle Level: Real-Time Monitoring of a Click Reaction, Angew Chem. Int. Ed., 2013, 52, 6011-6014.

王莹菲

50

Plasmonic Monitoring of Catalytic Hydrogen Generation by a Single Nanoparticle Probe, JACS, 2012, 134, 1221-1227.

王则呈

51

Thermosensitive Ion Channel Activation in Single Neuronal Cells by Using Surface-Engineered Plasmonic Nanoparticles, Angew Chem Int. Ed. 2015, 54, 11725-11729.

吴绍君

52

Plasmon-Enhanced Formic Acid Dehydrogenation Using Anisotropic Pd-Au Nanorods Studied at the Single-Particle Level, 2015, JACS, 137, 948-957.

杨媛娇

53

Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nature Photonics, 2016, 10, 733-739.

Photothermal Effect

于思琦

54

Room-Temperature Detection of a Single Molecule’s Absorption by Photothermal Contrast, Science, 2010, 330, 353-356.

张金月

55

Imaging the electrical conductance of individualcarbon nanotubes with photothermal currentmicroscopy, Nature Nanotech., 2009, 4, 108-113.

周洁

56

Optical detection of single non-absorbingmolecules using the surface plasmon resonanceof a gold nanorod, Nature Nanotech., 2012, 7, 379.

周鹃

57

Optofluidic control using photothermalnanoparticles, Nature Mater., 2006, 5, 27-32.

     

 

Seminar 日程安排
提醒:根据实际授课进度,课程讨论日程安排可能会有变化!!请随时留意,确认。

4.4开始,按照上述顺序,每次7个人,每人12分钟(9分钟介绍+3分钟讨论)。
4.4:   No. 1-7

4.9:  No. 8-14

4.16:  No. 15-21

 

4.23-5.28: 继续讲授红外、拉曼、分子相互作用部分。共八次课

 

5.28:No. 22-28

6.6:  No.29-35

6.4:No. 36-42

6.11:No. 43-49

6.13:No. 50-57

6.25起停课,进入考试周。  

 

The Chemical Imaging Lab, School of Chemistry and Chemical Engineering, Nanjing University

Email: wei.wang@nju.edu.cn   Labs: A203 & A204    Office: D306

Copyright© Chemical Imaging Lab. All rights reserved