COMMUNICATION

Ultrasensitive immunoassay based on dual signal amplification of the electrically heated carbon electrode and quantum dots functionalized labels for the detection of matrix metalloproteinase-9†

Fang Jiang, Jing-Jing Zhang, Jian-Rong Zhang* and Jun-Jie Zhu*

A dual signal amplification strategy was designed for electrochemical detection of matrix metalloproteinase-9 with the integration of electrically heated carbon electrode technique and quantum dots labels.

Matrix metalloproteinases (MMPs) belong to a multigene family of zinc-dependent endopeptidases that collectively degrade all components of the extracellular matrix. They play well-established roles in normal physiological and pathological processes. The overexpression of MMPs commonly associates with a variety of cell malignancy, including tumors of dermal, intestinal, pulmonary, ovarian, gastric, pancreatic, and mammary origin. Particularly, MMP-9 has been previously described as one of the most important enzymes related to the invasiveness and metastatic potency of human malignant tumors. Therefore, the accurate and sensitive detection of MMP-9 has become an intriguing subject in the study of disease mechanism, pathogenesis and treatment. Up to now, the expression of MMP-9 in diseased tissues is usually detected by ELISA, Western Blot analysis and zymography. Although promising, most of them, unfortunately, may be time-consuming, labor-intensive, require high technical expertise and sophisticated instrumentation. Meanwhile, the poor detection limit (ng mL\(^{-1}\)) of these methods restricts further application for some special diseases, especially during the early stage of diseases. Hence, it is beneficial to develop a highly sensitive and convenient detection approach for MMP-9.

Recently, electrochemical technique has been applied to monitor MMP-9 activity. For example, Andrew et al. developed an electrochemical impedance spectroscopy method where the detection limit of MMP-9 was 1.1 nM; Kizek et al. created a chronopotentiometric stripping analysis with a 100 pg mL\(^{-1}\) detection limit. Although all of these work were remarkable, the sensitivity and selectivity still need improving. Therefore, a dual signal amplification strategy has been designed for electrochemical detection of MMP-9, which integrates electrically heated carbon electrode (HCPE) technique with quantum dots (QDs) labels. The HCPE technique is a fantastic way to accelerate reaction kinetics and improve the mass transport by changing the temperature of electrode, thus leading to an enhanced electrochemical signal together with a higher signal-to-background ratio. Furthermore, the heated-electrode technique only heats the electrode but leaves the bulk solution temperature unchanged, which is suitable for clinical disease diagnostics. On the other hand, QDs are well recognized as electroactive labels for signal amplification in immunoassays with the great performance of exhibiting sharp and well-resolved stripping voltammetric signals. Particularly, when QDs are assembled on the surface of various nanocarriers, the signal amplification feature is dramatically enhanced. Consequently, the approach shows high sensitivity due to taking advantage of the specific technique of HCPE and QDs.

In addition, the fabrication of immunosensor needs the immobilization of a “receptor site”, which selectively recognizes the analyte. In this work, carbon nanotube-doped polypyrrole (MWNTs-PPy) synthesized by electrodeposition was chosen as an immobilization scaffold of proteins, which possesses properties of the individual components with synergistic effects. PPy has perfect conductive properties, thermal stability and biocompatibility in combination with biomaterials. PPy is, moreover, easily modified by proteins, and molecular imprints of high and low molecular weight. These properties make the PPy extremely useful for the design of biosensors. The prepared carbon nanotube-doped polypyrrole not only maintains all excellent properties of PPy, but also keeps excellent electrical and mechanical properties of carbon nanotubes which evaluates the surface-active groups-to-volume ratio and superb thermal stability of MWNTs-PPy. Thereby, MWNTs-PPy is considered as the perfect material for immunosensors.

State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R.China. E-mail: fjiang@nju.edu.cn; jzhang@nju.edu.cn; Fax: +86-25-83597204; Tel: +86-25-83597204

† Electronic supplementary information (ESI) available: Experimental details and Fig. S1–S6. See DOI: 10.1039/c3an00006k
Herein, we developed a novel dual amplification strategy for sandwich immunosensor through combining the heated-electrode technique with QDs for the detection of MMP-9. A superbiocompatible and thermal steady material, carbon nanotube-doped polypyrrole (MWCNTs-PPy) nanocomposite, was chosen to immobilize proteins. The proposed biosensor exhibited attractive advantages such as ease of performance, high sensitivity and specificity in the detection of MMP-9, revealing great potential towards early evaluation of cancer therapeutic effects.

The preparation procedure for CdTe QDs functionalized labels (anti-MMP-9/PS@PDA/CdTe-QDs) is shown in Fig. 1A. Firstly, polydopamine (PDA) was spontaneously deposited on the polyethylene sphere (PS) surface through self-oxidative polymerization of dopamine as reported previously. Then the achieved polydopamine coated polyethylene sphere (PS@PDA) nanoparticles were further incorporated with poly(diallyldimethylammonium chloride) (PDDA) via stirring for 20 min. Residual PDDA was removed by high-speed centrifugation and washed by ultrapure water three times. Subsequently, CdTe QDs solution was added into a dispersion of PS@PDA/PDDA, and the mixture was sonicated for 20 min. Excess particles were removed by subsequent centrifugation and then redispersion in water. This process resulted in the formation of homogeneous PS@PDA/PDDA/CdTe-QDs nanoparticles. Then, EDC and NHS were used as coupling agents to modify the resulting mixture with signal antibody by the formation of an amide link between the amino of anti-MMP-9 and the carboxylic of QDs. Finally, this anti-MMP-9/PS@PDA/PDDA/CdTe-QDs bioconjugates were stored in PBS (pH 7.4) with 3% BSA at 4 °C before use. Fig. 2D is the HRTEM image of PS@PDA/PDDA/CdTe displaying the uniformity of the coating and the presence of the CdTe nanocrystals. Additionally, layer-by-layer (LBL) assembly process for Ab2/PS@PDA/PDDA/CdTe bioconjugates was further verified by microelectrophoresis measurements (expressed as zeta-potential) in Fig. S4.

Fig. 1B depicts the stepwise procedure of the immunosensor fabrication. In the fabrication, the CNT nanotube-doped PPy was first synthesized through electropolymerization for the immobilization of proteins, which showed good biocompatibility (Fig. S2†) and remarkably conductivity (Fig. S3†). Then, the MWCNTs-PPy modified GCE was put into 100 ng mL⁻¹ Ab1 for 12 h. After washing with PBS buffer, the resulting immunosensor was incubated with blocking solution for 1 h to eliminate nonspecific binding and block excess active groups. The fabricated immunosensor was stored at 4 °C when not in use.

The detection was based on the typical procedure for sandwich-type immunoreactions. First, the immunosensor was incubated with a 10 μL drop of Ag standard solution or serum samples with different concentrations for 40 min. After the binding reaction between Ab1 and Ag was carried out, the immunosensor was incubated with Ab2/PS@PDA/PDDA/CdTe bioconjugates for 40 min, and washed thoroughly with PBS to remove nonspecifically binding secondary antibodies. Following, the captured labels were dissolved in HNO3, and the cadmic component acting as the detector target was quantified by differential pulse voltammetry (DPV). Finally, the heated-electrode technique was introduced in the stripping analysis for signal amplification.

The fabrication process was first characterized by cyclic voltammery (CV) as shown in Fig. 3C. Compared with bare glass carbon electrode (GCE) as shown in Fig. 3C, curve a, the peak current of MWCNTs-PPy/GCE was obviously increased, indicating the MWCNTs-PPy film facilitated the diffusion of the K₃[Fe(CN)₆]/K₄[Fe(CN)₆] redox probe towards the electrode surface. When Ab1 (c), Ag (d) and Ab₂ conjunction (e) were absorbed on the MWCNTs-PPy surface, the peak currents were decreased consecutively, which could be ascribed to the successive modifications of insulating proteins against the electron transfer on the electrode. SEM images can give further information on the morphology changes in the modification process (Fig. 2A–C). The MWCNTs-PPy nanocomposites were mostly in the form of small bundles or single tubes on GCE (Fig. 2A). After being immersed into Ab1 for 12 h, the surface became conglutination due to the protein aggregation. Furthermore, when Ab₂ conjunction attached to Ab₁/MWCNTs-PPy, the surface turned to be much rougher and appeared to have some decoration of the anti-MMP-9/PS@PDA/CdTe-QDs bionanolabel.
Conclusions

In summary, a novel ultrasensitive electrochemical immunoassay based on heated electrode technique was successfully developed. Combination of MWNTs-PPy nanocomposites and QDs nanoprobe, as well as the dual amplification technique of HCPE, and the proposed electrochemical immunoassay, exhibits acceptable stability, reproducibility, and accuracy, and excellent performance for the detection of MMP-9. Moreover, the smart method shows attractive performance for accurate clinical disease diagnostics, suggesting potential applications towards the early evaluation of tumor diseases.

Acknowledgements

This research was financially supported by the National Basic Research Program of China (Grant 2011CB933502), and the National Natural Science Foundation of China (Grants 21121091).

Notes and references