Ultrasonic-Assisted Synthesis of Monodisperse Single-Crystalline Silver Nanoplates and Gold Nanorings

Li-Ping Jiang,† Shu Xu,† Jian-Min Zhu,‡ Jian-Rong Zhang,‡ Jun-Jie Zhu,*t and Hong-Yuan Chen†

Laboratory of Life Analytical Chemistry, Department of Chemistry, and National Laboratory of Solid State of Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China

Received April 10, 2004

A simple sonochemical route was developed for the crystal growth of uniform silver nanoplates and ringlike gold nanocrystals in a N,N-dimethylformamide solution. The platelike structures were generated from the selective growth on different crystal planes in the presence of poly(vinylpyrrolidone) and the ultrasonic-assisted Ostwald ripening processes. The silver nanoplates in solution served as the templates for the synthesis of ringlike gold crystals via a displacement reaction. Both the silver nanoplates and gold nanorings were highly oriented single crystals with (111) planes as the basal planes.

Introduction

Metal nanoparticles such as silver and gold have many important applications in many aspects such as the catalysis process,1 optics,2 surface-enhanced Raman spectroscopy,3 etc. It is well-known that the physical, optical, and chemical properties of nanoparticles depend on their size and shape greatly. Especially for many nanosized metal and semiconductor materials, the two-dimensional (2D) structures such as nanoprisms,4,5 nanoplates,6–16 nanodisks,17,18 and nanorings7,19 are believed to have marvelous ability to control optical properties.

Therefore, it is very essential to develop a simple and effective preparation method of metal nanoparticles for well-controlled sizes and shapes. In recent years, much research and development has been focused on the growth and properties of silver nanoparticles with 2D structures.4–6,8,14,17–18,20 Noble gold ringlike structures have also been prepared via a displacement reaction using a platelike structure as a template.7,19 The processes in these approaches include the following: a photoinduced process,4,7,14,20 a thermal process,5 a displacement reaction,14,17–20 and a solution method at room temperature.17,19 Here we report an ultrasonic-assisted approach to prepare silver platelike and gold ringlike structures. The ultrasonic irradiation offers a kinetic process different from these processes and can promise a very short reaction time and relatively stable reaction conditions which come from the enhanced Ostwald ripening processes. The ultrasonic-assisted process leads to more uniform silver nanoplates and gold nanorings.

The sonochemical method has been used extensively to generate novel nanostructured materials with unusual properties since 1934. The chemical effects of ultrasound arise from...
acoustic cavitation, that is, the formation, growth, and implosive collapse of bubbles in a liquid. When solutions are exposed to strong ultrasound irradiation, bubbles in the solution are implosively collapsed by acoustic fields; as a result, the temperature can be as high as 5000 K, the pressure can reach over 1800 atm, and the cooling rate can be in excess of 10^6 K/s.

Cavitation bubble collapse can also induce a shock wave in the solution and drive rapid impact of the liquid to the surface of the particles. Thus, a lot of nanostructured materials have been prepared via the sonochemical method.

In this study, monodisperse silver nanoplates have been prepared via a simple sonochemical route. The TEM observation and UV-vis spectral characterization described a clear ultrasonic-assisted Ostwald ripening process including the following stages: the formation of prism-like seeds from the initial 2–5 nm spherical particles which were synthesized through a reduction reaction; a rapid dissolution and growth process from seeds to larger crystals; a slow growth process from the larger crystals to uniform silver nanoplates. An ultrasonic shock wave can accelerate the Ostwald ripening processes and control the size of the as-prepared particles. Adsorption of poly(vinylpyrrolidone) (PVP) on different planes of silver nanoparticles induced the selective crystal growth of platelike structures. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV–vis spectroscopy, and atomic force microscopy (AFM). Structural characterization indicated that these plate-like crystals were highly oriented single crystals with (111) planes as the basal planes. AFM images indicated that the average thickness of the as-prepared silver nanoplates was ca. 20 nm. The as-prepared silver nanoplates can be used as a template for the preparation of gold ringlike structures via a displacement reaction route. The as-prepared gold rings were also highly oriented single crystals and had the same morphologies as the silver nanoplates.

Experimental Section

All the reagents used were of analytical purity and were used without further purification. Silver nitrate, chloroauric acid, and N,N-dimethylformamide (DMF) were purchased from Shanghai Chemical Reagent Co. Ltd. (China). Poly(vinylpyrrolidone) (PVP-K30; MW 40000) was purchased from the Huakang Co. Chemical Reagent Factory (China). Distilled water was used in our experiments.

Silver nanoplates were synthesized by reducing AgNO3 with DMF in the presence of PVP. In a typical synthesis, 20 mL of AgNO3 solution (0.025M, in DMF) was added dropwise to a 20 mL PVP solution (0.005 M, in DMF). The mixture solution was exposed to high-intensity ultrasound irradiation under ambient conditions for 1/2 h. Ultrasound irradiation was accomplished with a high-intensity ultrasonic probe (Xinzhi Co., China, JY92-2D, 0.6 cm diameter; Ti–horn, 20 kHz) immersed directly into the reaction solution. The typical ultrasonic intensity was set as 60 W/cm². The product could be purified by centrifugation. In this case, the reaction mixture was diluted with water and centrifuged at 4000 rpm for 1/2 h. The products were characterized by XRD, TEM, SAED, AFM, and UV–vis spectroscopy.

The XRD pattern was recorded using a Philip X’pert X-ray diffractometer. The TEM and SAED images were recorded on a JEOL JEM-200CX transmission electron microscope, using an accelerating voltage of 200 kV. The HRTEM images were recorded on a JEOL-4000EX transmission electron microscope, using an accelerating voltage of 400 kV. The AFM images (tapping mode) were recorded on an SPI 3800N atomic force microscope. The UV–vis absorption spectra were obtained using a SHIMADZU UV-3100 spectrophotometer.

Gold nanorings were prepared via a simple template method. In a typical synthesis, after the synthesis of silver nanoparticles was finished as mentioned above, a 0.0243 M HAuCl4 solution of 6.7 mL was added dropwise into the hot solution under ultrasonic irradiation immediately (Au:Ag = 1:3), and the reaction was continued for 10 min. Then, aqueous ammonia solutions were added into the solution to dissolve the AgCl precipitate. After that, the products were centrifuged and washed with distilled water. The products were characterized by TEM and SAED. Different molar ratios of Au to Ag (1:4, 1:1) were also tried in the experiments.

Results and Discussion

Structural Characterization of Silver Nanoplates. Figure 1 is the typical powder XRD pattern of the as-prepared silver nanoplates. The overwhelmingly intensive diffraction located at 2θ = 38.02° corresponds to the (111) lattice plane of a face-centered cubic (fcc) structure (JCPDS No. 4-0783), while peaks belonging to other lattice planes are quite weak. This indicates that (111) planes of silver nanoplates are highly oriented parallel to the supporting substrate. This structure feature is quite common for the metal nanoplates, such as silver, gold, copper, and nickel plates.

Figure 2a gives the TEM image of the as-prepared silver nanoplates with an average size of 120 ± 10 nm. Figure 2b is the SAED pattern of a single crystal. The set of spots with
the strongest intensity could be indexed to (220) Bragg reflections with a lattice spacing of 1.44 Å, which indicates that the as-prepared nanoplates were single crystals with a (111) lattice plane as the basal plane. The inner set of spots with a lattice spacing of 2.50 Å was believed to originate from the 1/3 (422) plane normally forbidden by an fcc lattice, which suggested that the facets parallel to the TEM grid were smooth and flat. The appearance of the forbidden 1/3 (422) plane is often observed on silver or gold nanostructures in the form of thin plates or films bound by atomically flat and bottom faces.4,6,17 Pileni et al.27 suggested in their paper that (111) stacking faults existed in the platelike structures, which might be the reason for the occurrence of the 1/3 (422) forbidden reflections. The lattice constant calculated from this ED pattern was 4.066 Å, a value in agreement with the literature report of fcc silver ($a = 4.086$ Å). Figure 2d is the HRTEM image of the as-prepared nanoplates, and the fringe spacing is measured to be 0.25 nm, which corresponds well with the spacing between (422) planes of the fcc silver (0.250 nm). The flat structures were further confirmed by atomic force microscopy (tapping mode) as shown in Figure 3. Figure 3a is the two-dimensional image of silver nanoplates, and Figure 3b gives the three-dimensional image of a single silver nanoplate. The line analysis confirms the flatness of the top surface of the silver nanoplates with an average thickness of 20 nm.

Microscopic and Spectroscopic Monitoring of the Growth Process. Silver nanostructures at various stages of the growth process were characterized by TEM. Figure 4 shows the images of the sample taken from the reaction mixture after the solution was exposed to high-intensity ultrasound irradiation under ambient conditions for 0, 7, 9, and 20 min. In our experiments, DMF was used as a solvent and reducing agent. Liz-Marzan28 had proposed the probable mechanism as follows:

$$\text{HCONMe}_2 + 2\text{Ag}^+ + \text{H}_2\text{O} \rightarrow 2\text{Ag}^0 + \text{Me}_2\text{NCOOH} + 2\text{H}^+ \quad (1)$$

Due to the quick reduction process, 2–5 nm spherical silver nanoparticles were formed immediately in the initial reaction mixture as shown in Figure 4a. At 7 min, a small spherical particle was still the main morphology; at the same time, a few 10–20 nm nanoprisms had appeared in the mixture (Figure 4b). These silver nanocrystals would serve as seeds for the growth of silver nanoplates. At 9 min, the reaction mixture became opaque; most particles in the reaction mixture were 30 nm (weak) could be observed in the UV–vis absorption spectra at different reaction stages. At the initial stage, there is a symmetric absorption peak centered at 416 nm, indicating the existence of small spherical silver nanoparticles. When the reaction was continued for 7 min, the symmetric absorption peak of spherical silver nanoparticles still existed, while another absorption peak centered at 495 nm appeared, showing the appearance of anisotropic silver nanostructures. When the reaction proceeded to 9 min, a peak centered at 538 nm appeared, accompanied by a much weaker absorption intensity at 416 nm, indicating the formation of polygonal structures of silver nanoparticles and the depletion of spherical silver nanoparticles. After the reaction was finished, three peaks at 653 nm (strong), 470 nm (medium), and 341 nm (weak) could be observed in the UV–vis spectrum of the as-prepared silver nanoplates. According to Mie’s theory,31 small spherical nanocrystals, either Ag or Au, should exhibit a single surface plasmon band, whereas anisotropic particles should exhibit two or three bands, depending on their shapes. Larger particles can exhibit additional bands corresponding to quadrupole and higher multipole plasmon excitation. On the basis of discrete dipole approximation, Jin et al.4 gave theoretical calculation of the UV–vis spectroscopy of nanoprisms. According to Jin et al.,4 for a perfect nanoprism, the 770 nm peak is the in-plane dipole plasmon resonance, the 470 nm peak is the in-plane quadrupole resonance, and the 340 nm peak is the out-of-plane quadrupole resonance. It was also mentioned4 that the peak at 770 nm is very sensitive to the sharpness of the tips on the triangles. In this study, most of the nanoplates were also truncated; therefore, the 770 nm peak shifted to 653 nm.

The TEM observation and UV–vis absorption spectra described a clear growth process. The initial stage (before 7
min) was a seed formation process, in which the size of the particles changes very slowly; at the medium stage (7–9 min), the seeds formed in the initial stage quickly grew to larger crystals via Ostwald ripening processes; after that, the growth rate gradually slowed. At last, after 20 min, the particles became stable. The average size of the particles at 20 min is the same as that at 30 min.

As the reaction proceeded, the amounts of initial particles decreased while plate-shaped crystals appeared and grew larger continuously. The silver nanoparticles of larger sizes were believed to grow at the expense of smaller ones via Ostwald ripening processes. In this process, small nanoparticles dissolved and grew into large crystals. The dissolution and crystal growth on the surface are the parallel processes.

At the end of the reaction, the formation of uniform and well-shaped particles can be considered as a result of the balance between dissolution and crystal growth in the solvent. Due to the large surface-to-volume ratio of the nanosized particles, the dissolution is much easier; the growth rate is comparatively slower because small particles often grow much more slowly than macrocrystals. Hence, the initial stage of the reaction was mainly a dissolution and prism-shaped seed formation process. After a certain time of dissolution, the supersaturated Ag began to promote the crystal growth on the surface of the seeds. The crystal growth reached the maximal rate in a very short time, and then the rate decreased gradually. The above growth process corresponds well with the UV–vis absorption spectra.

This kind of silver nanoplate was first synthesized in the same solvent using a heating method. In the thermal process, the formed nanoprisms become larger with time, and a wider variety of shapes are found for longer boiling times. However, in our experiments, the prepared particles became stable with uniform shape after 20 min. The kinetics of ultrasonic degradation is different from those of thermal processes. In the sonication process, cavitation bubble collapse will launch shock waves into the liquid. The large forces from the waves can even result in the breakage of the bonds in the polymer chain. When these shock waves pass over particles, they can also cause the rapid impact of the liquid on the surface of the particles and promote the dissolution of the small particles. The strong impact from the shock waves was more effective in accelerating the Ostwald ripening processes.

Influence of the Ultrasonic Intensity and the Molar Ratio between PVP and AgNO₃. The sonication effects were further proved by the changes in sizes of the as-prepared silver nanoparticles under different ultrasonic intensities. The silver nanoplates had an average size of 100 ± 20 nm (Figure 6a) when the reaction was under a lower ultrasonic intensity (55 W/cm²); the average size of the nanoplates increased to

Intensity increased to 65 \(\text{W/cm}^2\), the average size increased to 150 nm and \(\text{AgNO}_3\) were also tried; however, in that case, the crystals had a molar ratio of 0.025. Higher molar ratios between PVP and \(\text{AgNO}_3\) favored the growth to the triangular silver nanoplates. When the ratio was reduced, the as-prepared silver nanoplates had spherical or polyhedral silver crystals as the main products, indicating that a large amount of PVP was surface coated with a thick PVP layer. As a result, small nanoparticles were unfavorable for the growth of silver nanoplates. The molar ratio of PVP and \(\text{AgNO}_3\) between 0.1 and 0.3 favored the growth to the triangular silver nanoplates. When the ratio was reduced, the as-prepared silver nanoplates had more round corners, and some particles had polyhedral structures. Figure 7a shows the morphology of a sample when the molar ratio was 0.025. Higher molar ratios between PVP and \(\text{AgNO}_3\) were also tried; however, in that case, the crystals were surface coated with a thick PVP layer. As a result, small spherical or polyhedral silver crystals were the main products (Figure 7b), indicating that a large amount of PVP was unfavorable for the growth of silver nanoplates.

The observed growth patterns suggest that the presence of PVP induced the formation of triangular silver particles.
the formation of ringlike structures. According to the literature, the free energies associated with the crystallographic planes of an fcc metal decrease in the order $\gamma_{(110)} > \gamma_{(100)} > \gamma_{(111)}$; therefore, the displacement reaction will occur on the surface of a silver nanoplate in the order (110), (100), (111). Because the as-prepared silver nanocrystal has the (111) lattice plane as the basal plane, the displacement reaction mainly occurred along the faceted edges of the plates to form a ringlike structure of gold crystal around the silver template first, and then the chloroauric acid began to displace central silver atoms to form a gold slice on the surface of the (111) plane. Meanwhile, the gold on the surface also dissolved into the solvent continually under the ultrasound irradiation. Since the dissolution rate of the gold on the (111) plane was much quicker than the crystal growth rate, the gold slice was replaced to the faster growing faces via Ostwald ripening processes. Thus, in this process, the gold at the edges would serve as nuclei and grow to the gold nanorings finally. When the molar ratio between Au and Ag was 1:4, which was lower than the stoichiometric ratio (1:3) shown in eq 2, the as-prepared nanoparticles had ring structures with a thin layer of silver (111) planes (Figure 10a). Since this thin layer was only observed in products whose molar ratio was lower than the stoichiometric ratio, we believed that the layer was composed of silver atoms on the (111) plane that had not been displaced yet. When the molar ratio was greater than or equal to the stoichiometric ratio, as is shown in Figure 10b,c, the central atoms completely disappeared and the final products had ringlike structures.

As we mentioned before, the Ostwald ripening processes were enhanced by ultrasonic irradiation. In the replacement process from the silver nanoplates to the gold nanorings, the ultrasonic irradiation also plays an important role. We have tried the synthesis of gold nanorings under different ultrasonic intensities, which might help to explain the effects of ultrasonic irradiation. Under a lower ultrasonic intensity (30 W/cm²), there are a lot of broken pieces of gold nanocrystals observed in the TEM image (Figure 11) when the reaction was continued for 10 min. When the ultrasonic intensity is 60 W/cm², only very few broken pieces occur in the products. We suppose the pieces come from the Au on the (111) plane of the nanoplates (the areas indicated in Figure 11). Since the Ag is easily replaced by Au, the replacement reaction takes place very quickly. Under high ultrasonic intensity, the sonication will promote the Ostwald ripening processes and the Au on the (111) plane will be transferred to the frameworks. Under low ultrasonic intensity, the effect of Ostwald ripening processes is relative weak and the Au will soon form many Au islands on the (111) plane. These islands are unstable under ultrasound irradiation and will break into many pieces as we observed in the TEM image.

Conclusion

A simple and effective route has been developed for the preparation of 2D structures such as silver nanoplates and gold nanorings. Silver nanoplates were prepared via a sonochemical method. The as-prepared silver nanoplates...
were uniform and highly oriented single crystals with (111) planes as the basal planes. These platelike nanocrystals could serve as templates to fabricate ringlike metal structures via a simple displacement reaction under ultrasonic irradiation. The as-prepared gold nanorings have the same morphology as silver nanoplates and are also highly oriented single crystals. We studied the reaction mechanism and proposed a PVP-assisted selective and ultrasonic-enhanced growth process. The prepared silver nanoplates and gold rings could be oriented on the surface of the substrate and might help to explore new applications in the direct electrochemistry of biomolecules such as horseradish peroxidase in the future.

Acknowledgment. This work is supported by the National Natural Science Foundation of China (Grant No. 20325516 and 90206037) and the Research Foundation for the Doctoral Program of the Ministry of Education of China (Grant 20020284022). We are grateful to Dr. Lin Pu from the Department of Physics and Prof. Xiangkang Meng from the Department of Materials Science and Engineering for their sincere help. We also thank Mr. Jianming Hong from the Modern Analytic Center at Nanjing University for extending his facilities to us.

IC049529D